
VIRGINIA TECH

CENTER FOR

COMPOSITE MATERIALS

AND STRUCTURES
C

' 9" ",/Vf;'
CCMS=87=11

VPI-E=87-13

/__- :_--_/-_.

Space Environmental Effects

on Graphite-Epoxy

Compressive Properties and

Epoxy Tensile Properties

!ilii

.... b...

ii!i_iil

::::|

1
/

/

/
/

f

Derek J. Fox

George F. Sykes, Jr.
Carl T. Herakovich

Virginia Polytechnic

Institute

and

State University

Blacksburg, Virginia

24061

_}oxx T_sIl£ _[C[ZS_]_Z (_A) 177 p

_vail: _IS HC _£9/B_ A01 CSCZ 11D

N87-2£ 155

Unclas

G3/2_ 00£5_58



College of Engineering
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

July 1987

CCMS-87-11
VPI-E-87-13

Space Environmental Effects

on Graphite-Epoxy Compressive Properties

and Epoxy Tensile Properties

Derek J. Fox 1
Carl T. Herakovich 2

George F. Sykes, Jr. s

Department of Engineering Science & Mechanics

Interim Report 63
The NASA-Virginia Tech Composites Program
NASA Grant NAG-I-343

Prepared for:

Applied Materials Branch
National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23665

1 Graduate Student, Department of Engineering Science & Mechanics

z Professor, Department of Engineering Science & Mechanics

3 NASA Langley Research Center, Applied Materials Branch



SpaceEnvironmentalEffectsonGraphite-EpoxyCompressive

PropertiesandEpoxyTensileProperties

(ABSTRACT)

The objectives of this study were to characterize the effects of the space environment on

the compressive behavior of T300/934 graphite/epoxy composite material and on the tensile

properties of the neat (unfilled) epoxy matrix material. Both materials were tested in the

baseline state and after exposure to electron radiation (total dose of 10,000 Mrads of 1 MeV

electrons at a dose rate of 50 Mrads/hr). Irradiation was conducted under vacuum and sim-

ulates 30 year, "worst case", exposure in geosynchronous earth orbit.

A compressive test method was developed to characterize thin (8-ply) unidirectional

coupons. Compression tests were conducted at cryogenic (-250 ° F; -157 ° C), room, and ele-

vated (250 ° F; 1210 C) temperatures. Elastic and strength properties were obtained in the

principal material directions (El, E2, v12, v21, Xc, Yc). Tensile specimens of the neat Fiberite 934

epoxy resin were fabricated and tests were conducted at room and elevated (250 ° F; 121 ° C)

temperatures. Elastic and strength properties (E, v, _.) were obtained.

Irradiation and temperature were found to have a significant effect on composite and neat

resin properties. Properties tended to improve at cryogenic temperature and degrade at el-

evated temperature. Irradiation degraded properties at all temperatures, with the degrada-

tion being most severe at elevated temperature.
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1.0 Introduction

The use of advanced composite materials, particularly graphite/epoxy (Gr/Ep), in the design

of space vehicles and structures is increasing. The Hubble Space Telescope's main structural

elements are Gr/Ep tubes, and it is nearly certain that the space station truss structure will

be constructed of Gr/Ep tubes. Several large solar arrays and antenna structures, presently

in the planning stage, are likely to use composites in their primary structural elements [1].

There are several characteristics of Gr/Ep which make it a near ideal material for such ap-

plications. Among the most important of these is the ability to tailor the properties of the fin-

ished component by selection of ply-angles. This allows the designer to use structural

components with very low CTE (coefficient of thermal expansion), high stiffness and strength,

and excellent damping characteristics. In addition, the low-density of the materials eases

payload requirements.

Before the advantages of composites can be fully exploited, the effects of long term exposure

to the space environment must be assessed.
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1.1 The Space Environment

Three parameters of the space environment were investigated in this study: vacuum, electron

radiation, and temperature. These parameters are believed to be the most significant degra-

dation mechanisms present in the geosynchronous earth orbit (GEO) environment. While in

space, all materials are subjected to a near perfect vacuum. This can produce serious out-

gassing and, subsequently, induce void formation and shrinkage problems. All materials in

this study were held in vacuum for a minimum of three weeks. In addition, all the irradiation

was conducted under hard vacuum.

The space radiation environment covers nearly the entire electromagnetic spectrum from

visible and ultraviolet (UV) light to charged particles (electrons, protons) to hard cosmic and

gamma rays. It is impractical and unnecessary to simulate all these types of radiation. In

GEO the most significant forms of radiation are UV, electrons, and protons. Lower energy

forms of radiation (visible light) are believed to have negligible, if any, effect on structural

materials and the higher energy forms of radiation (x-rays, cosmic rays) have such low fluxes

as to be insignificant. In addition, it is usually assumed that fast neutrons, gamma rays, and

accelerated electrons all provide comparable degradation of epoxies, if the exposure is con-

ducted under vacuum [2].

Ultraviolet and proton irradiation affect primarily the exposed surfaces of materials and while

they are likely to degrade thin film coatings and highly polished surfaces, they are of small

importance to relatively thick structural materials. On the other hand, electron radiation is

highly penetrating and experienced in high doses over the expected 20-30 year life of a space

structure. Electron radiation is the only form of irradiation investigated in this study.

The thermal environment of space is literally day-and-night. Surfaces exposed to the sun

experience temperature upwards of 250 ° F (1210 C), while those shadowed from the sun are
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in the icy coldof space(-250° F;-157 o C). Thermal conduction and cycling of the structure

between light and dark means that these extremes won't be reached in most space structures.

Nonetheless, the mechanical tests conducted in this study were performed at cryogenic (-250 °

F; -157 ° C), room, and elevated (250 ° F; 121 ° C) temperatures to span the entire space equiv-

alent range.

1.2 Objectives

The objectives of this study are to characterize the effects of the space environment on the

compressive properties of a graphite/epoxy composite (T300/934) and the tensile properties

of the neat (unfilled) epoxy resin, Fiberite 934.

Previous work (to be discussed in the next chapter) has found that the space environment can

produce large effects on matrix dependent composite properties, while fiber-dominated prop-

erties are essentially inert. Because longitudinal compressive properties are matrix depend-

ent, it was believed they would be more sensitive to radiation and temperature than the

corresponding tensile properties. The investigation of the neat resin was intended to provide

a more quantitative measurement of the changes in the epoxy properties due to temperature

and irradiation.
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2.0 Background

The first section of this chapter is an overview of some of the recent work on irradiation effects

on composites. Particular emphasis is given to the irradiation procedures used, the me-

chanical (or other) properties measured, and the most significant results obtained. Unless

otherwise stated, the observations and conclusions are those of the respective authors.

Following the discussion of the literature, the materials and irradiation procedures used in this

study are described. Finally, the effects of irradiation on the glass-transition temperature will

be presented and discussed.

2.1 Literature Review
O

This report is the third in a sequence produced under sponsorship of the NASA-Virginia Tech

Composites Program on the effects of electron irradiation on Gr/Ep, specifically the T300/934

material system. Milkovich, Herakovich, and Sykes [3-6] investigated the in-plane tensile and

shear properties, thermomechanical and dynamic mechanical properties, and the combined
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effect of thermal cycling and irradiation. Reed, Herakovich, and Sykes [7-8] studied the effect

of chemically modifying the matrix material on the in-plane composite tensile and shear

properties. In addition, they investigated the changes in energy dissipation under cyclic

loading in both the standard, T300/934, and modified material systems.

In general, both studies found that matrix dependent properties (transverse tensile and shear

properties) were most affected by electron irradiation and degradation was most significant

at elevated (250 ° F; 121° C) temperature. In addition, radiation was found to: lower the glass

transition temperature (Tg) [3,7], and increase the energy dissipation under cyclic loading [7].

The primary degradation mechanism was shown to be degradation of the epoxy network

structure and generation of low molecular weight products [4].

Sykes, and co-workers at NASA-Langley Research Center, have performed a number of

studies on irradiation effects. Bowles, Tompkins, and Sykes [9-11] investigated the effect of

radiation on the dimensional stability and CTE (coefficient of thermal expansion) of several

graphite/resin composites. They found that permanent residual thermal strains were

produced in irradiated (10,000 Mrad) Gr/Ep (T300/5208) after thermal cycling [9] and

embrittlement and microcracking of an elastomer-toughened Gr/Ep (T300/CE339) at total

doses of irradiation as low as 10 Mrad. The elastomer-toughened system (T300/CE339) was

shown to be more sensitive to radiation-induced degradation than a similar "non-toughened"

system [10].

Work done by Sykes and Slemp [12] showed that T300/CE339 experienced significant degra-

dation of in-plane mechanical properties following irradiation. This makes the material un-

suitable for use in precision space structures subjected to electron radiation.

A recent study by Funk and Sykes [13] showed that electron radiation increased the fracture

toughness of T300/934. This study utilized both the edge delamination tension (EDT) and
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double cantilever beam (DCB) tests. The results indicated that electron irradiation affected

bulk matrix properties and did not significantly degrade the fiber-matrix interface.

It should be noted that all these studies [3-13] used irradiation procedures similar to those

used in this report. The only difference was that some of the studies investigated the effects

of varying the total dose. In these studies the radiation source and dose rate were the same

as in this study, but the specimens received less than the 10,000 Mrad dose believed to be

equivalent to 30 year space exposure. Other researchers have used different radiation

sources, dose rates, and total doses. It is important to note these parameters when compar-

ing the work of different researchers.

Milkovich, et al. [3] provided a rather extensive survey of the available literature on radiation

effects in composites. To briefly summarize the results of this survey, it was found that: the

total doses of radiation employed in research studies were often insufficient to simulate the

long term (>20 years) effects of radiation, only a limited number of properties had been in-

vestigated, and many different, often conflicting, conclusions had been drawn. The trends in

the data included the following: degradation was most significant at elevated temperature,

glass transition temperatures were lowered, and there was little or no effect on fiber-

dominated properties. The results of three other studies (conducted since the publication of

Ref. 3) will now be described.

Work by Takeda, et al. [14] indicated that interlaminar shear and fiexural properties of carbon

cloth/epoxy (Torayc no. 6142 plain woven type/Sumiepoxy ELM-434, respectively) laminates

were unaffected by electron irradiation up to total doses of 12,000 Mrad. The irradiation was

carried out using a Dynamitron IEA-300-25-2 type electron accelerator and a dose rate of 1800

Mrad/hr. The interlaminar shear strength was measured using a method similar to ASTM

D-2733 and the flexural properties were obtained in three-point bending.
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Leung[15] investigated moisture absorption, dynamic mechanical properties, and interlaminar

shear strengths in Gr/Ep (T300/934) subjected to gamma radiation. The radiation source was

Co-60 and the irradiations were conducted at 77 ° F (25 ° C), 212 ° F (100 ° C), under vacuum, and

in air for a total of four different conditions. The dose rate was approximately 0.257 Mrads/hr

and four different total doses (up to 320 Mrad) were used.

From moisture diffusion measurements, Leung concluded that the matrix material was dam-

aged and the fiber-matrix interaction was improved by radiation. The dynamic mechanical

results, measured using a Rheovibron Dynamic Viscoelastometer (Model RHEO-200), indi-

cated a decrease in the glass transition temperature and initial decrease, followed by mod-

erate increases, in the fiexural damping loss tangent (tan $ ) as total dose increased. Short

beam interlaminar shear strength (at room temperature) showed an initial increase and sub-

sequent decrease with increasing total dose.

Maiden, Gounder, and Seehra [16] measured several physical and mechanical properties of

an ultra-high modulus Gr/Ep material system (RCA-2606114). They measured properties at

-300 ° F, 70 ° F, and 160 ° F (-184 ° C, 21° C, and 710 C, respectively) before and after simulated

space environment conditioning. This conditioning consisted of both electron irradiation and

thermal cycling. The material was irradiated with 12 MeV electrons at a dose rate of 300

Mrads/hr to a total dose of 300 Mrads. The thermal cycling was conducted between -300 ° F

(-184 ° C) and 160 ° F (71 o C) with a heating/cooling rate of 11° F/min (6° C/min). All materials

were oven dried at 225 ° F (107 ° C) for 4 hours and the material which was exposed to the

simulated space environment was oven dried again (225 ° F; 107 ° C; for 4 hr) after exposure.

The properties measured in this study included: longitudinal and transverse tensile strength

and modulus, in-plane (45 ° off-axis tension) and interlaminar (short beam) shear strengths,

longitudinal and transverse coefficients of thermal expansion and moisture expansion (CTE

and CME, respectively).
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The greatest changes observed by Maiden, et al. [16] were in longitudinal tensile modulus and

transverse tensile strength at cryogenic temperature and transverse tensile modulus and in-

plane shear modulus at elevated temperature. In-plane shear strength was significantly re-

duced across the entire temperature range. CTE and CME properties were only slightly

affected by exposure to the simulated space environment.

2.1.1 Observations on the Literature

The literature on irradiation effects on composites covers a wide range of irradiation proce-

dures, measured properties, material systems, etc. The most common properties investigated

are tensile modulus and strength, shear modulus and strength, and a variety of

thermophysical properties (CTE, Tg, tan 5, etc.). When investigated, test temperature was

shown to have a significant effect on the amount of radiation-induced degradation.

The interested reader is encouraged to consult the references mentioned in this section for

details of the various experimental programs and results obtained. The studies surveyed are

not an exhaustive list, but are believed to be representative of the recent work in the field.

2.2 Materials

2.2.1 Graphite/Epoxy Composite

The composite material used in this study, as in previous work [3-8], is T300/934

graphite/epoxy. This material has been approved for use in space by NASA. Thornel (Union
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Carbide) T300 is an intermediate strength carbon fiber produced from a polyacrylonitrile (PAN)

precursor. Fiberite 934 is a 350 ° F (177 ° C) cure epoxy and is representative of epoxies of this

type. The material was obtained as unidirectional prepreg tape, HYE-1034C, from the Fiberite

Corporation. Panel layup and processing were conducted at NASA-Langley Research Center

according to manufacturers specifications. All compression specimens were cut from a single

unidirectional 8-ply panel.

This panel was C-scanned to ensure integrity and samples of the panel were analyzed to de-

termine void content, volatile content, fiber weight percent, and density according to ASTM

Standard D3171-76 [17]. From this data and the densities of the constituent materials the fiber

volume fraction can be calculated [17]. The results of these measurements and calculations

are_ summarized in Table 1. These measurements were made on baseline and irradiated

samples. There were differences in the specimens but it was unknown whether this difference

was due to irradiation or simply reflected the "natural" variability of the material or the

measurement process. The irradiated material seems to have a lower fiber weight and vol-

ume fraction than the baseline.

2.2.2 Neat Epoxy Resin

The neat resin tensile tests were conducted using Fiberite 934 epoxy resin provided by the

Fiberite Corporation. The resin was supplied thoroughly compounded and mixed in 20-30%

acetone solution. The resin was cast to the net shape of ASTM Type V tensile specimens

(Standard Test Method D638-2a [18]) in silicone rubber molds.

This resin (Figure 1) is based on a tetraglycidyl epoxy (MY-720) cured with a diamine curing

agent (DDS). A diglycidyl reactive dilutent (GLYCEL 100) is present--such dilutents are com-

monly added to decrease the viscosity of the uncured resin and allow easier processing. A
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Table1. DensityandVolumeFractionResultsfor1"300/934Graphite.Epoxy

Property Baseline Irradiated

FiberWeight
Fraction,Wf

Average

Volatile

Content

Average

Density

(g/cm _)

Average

Fiber Volume

Fraction, Vf

Average

68.2%

70.5

66.6%

67.9

69.4 67.3

0.1% 0.2%

0.0 0.1

0.05 0.15

1.59 1.59

1.61 1.60

1.60 1.60

61.6% 60.2%

64.5 61.7

63.1 61.0
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/0_ /0

HzC_CH CH2_ ,/CHzCH'-_CH 2
N CH N

HzC_CHCH / _ 2_'CHCH__CH
2 2 _0 / 2

Tetraglycidylmethylenedianiline (MY-720)

0
II

0

Oiaminodiphenylsulfone (DDS)

0
II /0\

F'_C-O-CH2CH--CH2
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BF_MEAcomplexis added as a semi-latent hardener. This is often done in laminating appli-

cations because it allows "cooking" of the resin and cooling to obtain a dry stable B-staged

material [2]. Details of specimen processing and fabrication will be discussed in Chapter 5.

2.3 Irradiation Facifity and Procedures

All radiation exposure was conducted in the Space Materials Durability Laboratory at

NASA-LaRC. Specimens were firmly attached to an aluminum backplate (Figure 2) which was

water-cooled during irradiation. The specimens were irradiated in three separate batches;

two of which involved the composite compression coupons and a third for the neat resin

tensile specimens. All irradiation was conducted under high vacuum (2x10 -7 torr).

The specimens were exposed to 1 MeV electrons at a dose rate of 50 Mrads/hr for 200 hours

to yield a total dose of 10,000 Mrads. This translates to approximately two weeks of facility

use. Dose rate and total dose were continuously monitored by a Faraday cup. Watercooling

of the backplate and the chosen dose rate ensured that the temperature of the specimens was

maintained < 100° F (<38 ° C) [3]. The energy of the electrons is representative of those

present in the Van Allan radiation belts and was sufficient to provide uniform thru-the-

thickness exposure. The total dose is representative of 30 year, "worst-case", exposure in

space.
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2.4 Dynamic Mechanical and Thermomechanical Analysis

One of the most frequently used measures of the effect of irradiation is the change in the

second order transition or glass transition temperature, Tg. A second-order transition is de-

fined as a change in the rate of volume change with respect to the temperature. Thermal

agitation, which allows parts of the resin chain to rotate about its bonds, causes the transition.

The Tg is useful in determining maximum use temperature and in characterizing the resin [2].

There are several methods which can be used to determine the Tg which include hardness

tests, dilatometry, electrical resistance measurements, and dynamic-mechanical methods [2].

Because the molecular motions occur at specific rates the methods which load the material

quickly tend to produce higher Tu values. Many of the tests yield useful information about

molecular structure and motions which is as useful as the To itself [2].

2.4.1 Dynamic Mechanical Analysis

The DMA technique is based on the fact that the internal damping of the material greatly in-

creases near the Tg. The shape of the damping vs temperature curve can be related to the

molecular weight and crosslink density. The following general relationships are useful for

interpreting DMA results: higher damping peaks indicate decreasing average molecular

weight, rightward shifts (e.g. to higher temperatures) of the damping peak indicate higher

crosslink density, and wider damping peaks indicate wider distribution of molecular weights.

Milkovich, et al. [3] used a DuPont 981 Dynamic Mechanical Analyzer and these relationships

to determine the changes in the T300/934 material system due to electron irradiation. This

instrument vibrates a small (1" by 0.5"; 25.4 mm by 12.7 mm) rectangular piece of the material
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in flexure. The energy input required to maintain the oscillation at resonance as the temper-

ature is varied can be related to the damping of the sample. Milkovich, et al. obtained the

results shown in Figure 3 and in Table 2.

The lowering of the To and the higher damping peaks exhibited by the irradiated material

(Figure 3) indicate that the average molecular weight and crosslink density were reduced by

irradiation. The 90 ° specimen, which is more sensitive to matrix properties [7], also has a

broader damping peak (Figure 3b)o This implies that in addition to lowering the average mo-

lecular weight, irradiation also widens the distribution of molecular weights.

2.4.2 l"hermomechanical Analysis

Composite Characterization: Thermomechanical analysis (TMA) is another method which can

be used to determine the glass transition temperature (Tg). This method utilizes the large di-

mensional change which occurs near the To. This test also yields information regarding

modulus changes, creep properties, and phase transitions [3,7]. The DuPont 942

Thermomechanical Analyzer was used by Milkovich, et al. [3] to obtain the results shown in

Figure 4 and Table 2. This analyzer records the penetration of a hemispherically tipped

probe into a small square (0.25"; 6 mm) sample of the material as a function of temperature.

The expansion indicated near the end of the curve for the irradiated specimen was found to

indicate blistering due to volatilization of low molecular weight products of irradiation. The

results (Table 2) indicate that the softening point is lowered by about 100 ° F (50 ° C).

The TMA results correlate well with the DMA results. The DMA results indicated that

irradiation tended to reduce the degree of cross-linking, lower the average molecular weight,

and widen the distribution of molecular weights. All these effects suggest the formation of low

molecular weight products and the TMA results confirm this hypothesis. It should be noted
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that Sykes, Milkovich, and Herakovich [3] have analyzed these products and found them to

be fragments of the epoxy network structure. The subsequent work of Reed, et al. [7] showed

that alterations to the epoxy chemistry could eliminate some of these low molecular weight

products and cause a corresponding increase in the Tg in both the baseline and irradiated

conditions.

During the course of the compression testing, to be discussed in the Chapter 4, the strain

gages on the irradiated, elevated temperature, 90 ° specimens behaved peculiarly. It was

impossible to maintain bridge balance at the elevated test temperature (250 ° F; 121° C). Be-

cause the strains were of relatively small magnitude (compared to those obtained during the

mechanical test) and because of various factors associated with the level of initial preload,

heating rate, specimen-to-specimen variability, etc. it was difficult to assess the cause of this

effect.

il

The irradiated composite was very near the To (Figure 4) at the elevated test temperature

(250 ° F; 1210 C) and the material properties are highly temperature and time dependent in this

region. In an attempt to more precisely define the above phenomena, it was decided to try a

modification of the usual TMA test method. The usual method is to raise the temperature of

the test specimen from room temperature to some elevated temperature (i.e. 900 ° F; 500 ° C)

at a slow constant rate (9° F/min; 5 ° C/min) and record the probe penetration. In the modified

procedure, the temperature was raised to 250 ° F (121 ° C) at 36 ° F/min. (20 ° C/min.) and then

maintained (isothermal) for 1.5 hrs. Quite obviously, the material exhibits considerable time

dependent deformation (Figure 5). It should be emphasized that the portion of the curve from

point A to B was obtained while the material was at a constant temperature and very slight

mechanical load (the mass of the probe and a 15 gram weight).

The results shown in Figure 5 complement the findings of Bowles, Tompkins, and Sykes [9]

and Haskins [19] that permanent shrinkage occurs in the first thermal cycle during CTE

measurements. The causes of this shrinkage remain undetermined and possible explanations
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include: loss of volatiles (including water [19]), changes in the epoxy chemical structure [9],

and changes in the residual (curing) stress state. When the test method involves mechanical

loads, as in the above TMA procedure, it is also possible that creep behavior occurs.

Neat Resin CharacterizaUon: The neat Fiberite 934 resin was also characterized using the

standard TMA technique described above. The trends were similar to those observed in the

composite (Figure 6, Table 2). The To was lowered by approximately 1000 F (600 C) by

irradiation. In the baseline material the elevated test temperature is clearly below the tran-

sition region, while after irradiation the material is clearly in the softening range at the ele-

vated temperature.

The softening points of the baseline composite and neat resin materials are essentially the

same. The softening point of the irradiated composite is approximately 50° F (30 ° C) lower

than that of the irradiated neat resin. This is an indication that the material/radiation inter-

action may be different in the neat resin than in the composite.
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Table 2. Summary of TMA and DMA Results

T300/934 Composite*

Glass Transition

Temperature, Tg

Baseline

410 ° F

(210 o C)

Irradiated

300 ° F

(149 o C)

A%

-27

(-29)

Beginning of 325 o F 175 ° F -46

Plastic Behavior (163 ° C) (79 ° C) (-51)

Fiberite 934 Epoxy

Baseline Irradiated 4%

Beginning of 329 ° F 223 ° F -32

Plastic Behavior (165 ° C) (106 ° C) (-36)

* Results of Milkovich, Herakovich, and Sykes [3]
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3.0 Compression Testing

This chapter deals with one of the major thrusts of this study--the effects of temperature and

irradiation on the compressive properties of Gr/Ep (T300/934). First, there is a brief overview

of compression testing methods. The next section describes the features of the proposed test

program which encouraged development of a new test method and an outline of the devel-

opment process. Following this, the global buckling behavior of thin coupons is investigated

analytically. Finally, the test procedure, instrumentation, and methods of data analysis are

described.

3.1 Overview of Compressive Test Methods

As noted in the Introduction, it was decided to investigate the composite compressive prop-

erties because they are generally more matrix dependent than tensile properties. Indeed, Lee

and Neville [2] state that for glass/epoxy, "...though no property can be considered as a gen-

eral criterion for the resin formulation, compressive strength is probably the most sensitive

of the tests'. The increased matrix dependence under compressive loading often implies in-
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creasednonlinearity(compared to tensile loading) in the stress-strain response and different

properties (i.e. strength) in compression and tension.

Unfortunately, there are also difficulties encountered in compression testing of unidirectional

composite materials. Tsai [20] stated compressive strength was "one of the most difficult

properties to measure". The ideal compressive test method would satisfy the following re-

quirements:

• Produce a uniaxial compressive stress state free of grip effects

• Forestall global instability (buckling)

• Use a simple test specimen

• Be easy to perform and analyze

• Yield consistent and accurate results

While it is difficult to satisfy all these criteria simultaneously, there are fixtures available which

satisfy some of them. An exhaustive study of the fixtures available would be quite long and

tedious, however, a brief description of some representative fixtures is worthwhile. The test

fixtures can be classified by method of load introduction and by the techniques used to prevent

premature buckling. The two principal methods of load introduction are shear introduction

and direct loading. The techniques used to prevent premature buckling include the use of

short test sections, "self-aligning" grips, supporting the non-loaded edges or faces of the

coupon, etc.

The Celanese (ASTM Standard D3410 [21]) and the IITRI (modified Celanese) fixtures are

probably the most widely used. These fixtures are very similar and apply load by shear in-

troduction along the tabbed end of the specimen (Figure 7a). Buckling is prevented by the

use of short gage sections and axial load application ensured by alignment pins in the fixture.

The primary disadvantage of this fixture is associated with the necessity to tab the specimens.

Besides the time and effort which must be spent in the tabbing operation, tab debond and
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slippage can be substantial problems, particularly at elevated temperatures. Tab debonding

acts to increase the effective Euler column length and may lead to premature buckling [22].

Measured strength values have also been shown to be sensitive to the flatness and

parallelism of the tabs [23]. Principal advantages of these methods are the commercial

availability of the test fixtures and widespread use--which facilitates direct comparison of

experimental data.

Side-or face-supported fixtures (Figure 7c) restrain lateral displacement of the coupon edges

or faces. The advantage is to raise the global buckling load and allow the use of longer gage

length coupons. Potentially, this could be of particular value for off-axis compression tests.

Unfortunately, k,,,.t.,.',,,_........ u type failures are common in these fixtures and they generally produce

gth ...... typ .................... ;" .... ,h..,4 t,_x _,,*._X,,,-ti,_n"iow" stren values. I 11_5_ e ui ii_l.gll_ IllGly g_ _11.11_1 iil_.,i, lluu of luuu ...............

The final type of fixture to be considered is the end-loaded coupon type (Figure 7b). Direct

load introduction is used and coupon sizes are generally quite small, especially since minimal

grip region is required (compared to shear introduction specimens). Short thick specimens

are used to prevent buckling. While it is often possible to eliminate tabbing the gripped sec-

tion of the test coupon, direct load introduction requires the loaded surfaces of the fixture and

the loaded edges of the specimen to be as fiat and parallel as possible. There are numerous

fixtures of this type.

For an excellent comparison and discussion of results from three test fixtures (Figure 7) the

interested reader is referred to the report by Clark and Lisagor [23]. It is worth emphasizing

that the above descriptions are very generalized. A plethora of different fixtures exists and

are in use. Additionally, the fixture used by a particular researcher is likely to be determined

by requirements specific to a proposed testing program (unusually thick or thin specimens,

environmental exposure conditions, etc.). Two characteristics which should be present in

virtually any experimental setup are: existence of at least one ball joint in the load train (to
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minimize applied moments) and reliable techniques to ensure axial load application (align-

ment pins, guide cylinders, wedge-shaped "self-centering" grips, etc.).

3.2 Test Method Development

As alluded to above, there were characteristics unique to the proposed test program which

encouraged development of a different test method and which influenced the development

process. Most significant of these was the necessity to limit the specimen thickness to eight

plies. This was necessary to ensure uniform thru-the-thickness exposure, and to avoid over-

heating during, irradiation. The limited area which could be exposed during irradiation (10";

254 mm; diameter circle) argued for a small compact specimen. The requirement to test at

cryogenic (-250 ° F; -157 ° C) and elevated (250 ° F; 121 ° C) temperatures, as well as room tem-

perature, suggested a fixture easily placed in and removed from the environmental chamber.

The highly anisotropic properties of unidirectional T300/934 formed yet another set of con-

straints. It was necessary for the fixture to be strong and rigid enough to withstand the forces

involved in the 0 ° tests and yet not be so massive as to break or damage the 90 ° coupons

during specimen mounting and positioning.

The development process began with a fixture being used at NASA-Langley Research Center

to investigate thermal buckling behavior of thin laminates. Many of the basic features and the

general overall appearance of this fixture remained intact throughout the development proc-

ess. It was recognized, almost immediately, that elimination of premature buckling failure

was the primary difficulty to be overcome. It was decided that room temperature longitudinal,

"in-the-fiber-direction", strength would be the criterion by which success, or lack thereof,

would be measured. This was done so that design changes could be evaluated quickly and
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efficiently. It reduced instrumentation, data acquisition, and analysis needs to a minimum.

From a perusal of the literature [20, 22-24], it was determined that consistent strength values

in the 180 to 200 ksi (1200 to 1400 MPa) range would be acceptable for T300/934

g rap h ite/e poxy.

Intrinsic to the existing fixture, or modifications made to it immediately were the following:

• All steel construction

• Direct load introduction with a portion of the coupon surface gripped

• Incorporation of a ball joint in the load train

• Loading eccentricity controlled by the tolerances between the slider and the guide cylin-

der and between the plunger and the top plate (Figure 8, Figure 9)

During the development process the size of the test (unsupported) section was reduced from

1" (25 mm) to 0.125" (3.2 mm) and expanded again to 0.25" (6.4 mm), the overall coupon di-

mension shrunk from 1.5" (38 mm) to 1.25" (32 mm) and the portion of the coupon gripped grew

from 0.25" (6.4 mm) to 0.5" (13 mm) at each end of the specimen.

Test method development began at Virginia Tech using a UTS screw-driven, displacement-

controlled-type testing machine and unidirectional (0 °) 8-ply T300/5208 material. It was felt

that the differences between the Narmco 5208 and Fiberite 934 epoxy matrices would be neg-

ligible for fixture development purposes. During this period, winter and early spring 1988, the

end grips were redesigned and the tolerance between the slider and guide cylinder was re-

duced from 0.002-0.003" (0.05-0.08 mm) to 0.0005" (0.013 mm). In the spring of 1986, reliable

strength results of 180 ksi (1200 MPa) were being produced and fabrication and instrumenta-

tion of the T300/g34 specimens began. It was also noticed that localized yielding of the steel

slider had occurred in the contact region under the specimen. Rather than harden the entire

piece and risk losing the close tolerance with the guide cylinder, a slot was cut into the piece

and a hardened steel insert was pressed into the slot.
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Subsequently, testing was resumed at NASA-LaRC in June, 1986 on a hydraulic MTS machine

with a 100 kip (450 kN) load frame and with T300/934 specimens. Some difficulties were en-

countered in positioning the fixture in the test machine, although these were rapidly over-

come. It was found that insufficient force had been used in pressing the steel insert into the

slider, as it was pushed farther into the piece by initial checkout tests. The slider was surface

ground flat and level to correct this problem.

More vexing than either of these problems was an unexpected tendency of the T300/934

specimens to crush, near the loaded edges, within the grip section. Such failures were very

rare with the earlier T300/5208 specimens and considerable effort was expended to eliminate

them with the T300/934 specimens. It was noticed that one pair of end-grips was slightly

deformed and a new set was made of a harder material, but this failed to eliminate the prob-

lem. Again, it should be noted that longitudinal compressive strength was the only criterion

for "success".

With some reluctance, it was decided to try tabbing the 0 ° coupons. It was felt that the addi-

tional support from the tabs would prevent the bearing-type failures. Because of the limited

space available in the fixture, thin (0.020"; 0.5 mm) steel tabs were used. These tabs were

found to be somewhat effective. Tab debond, followed by failure in the grip region, was ini-

tially encountered. Eventually this problem was overcome, by improving the tab bonding

procedure, and although tab debonding still sometimes occurred at failure, the fracture sur-

face was generally outside the grip region and the strength values were at an acceptable level

(>180 ksi; >1200 MPa).

Checkout tests were run at elevated and cryogenic temperatures to verify that the fixture

didn't bind or freeze-up. The fixture was heated, disassembled, to 250-300 ° F (120-150 ° C) and

assembled, hot, several times. No difficulties were encountered. It was impossible to do the

same at cryogenic temperatures for two reasons: the environmental chamber would be

damaged by opening it and contact with the moist air would cause immediate icing. Visual
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examination of the test fixture at cryogenic temperature revealed minimal frost accumulation

during cool-down. No indications of icing were noticed during testing. In addition, uninstru-

mented specimens were tested at elevated and cryogenic temperatures. The strength values

followed the expected trends qualitatively and quantitatively.

3.3 Buckfing Analysis

In any situation where axial compressive loads are being applied instability phenomena must

be considered. As mentioned in the last section, elimination of global buckling was one of the

difficulties encountered during test method development. As a part of this work, the global

buckling load was calculated for a variety of support conditions. It was found that the Euler

column formula provides an excellent measure of the buckling load for the specimen geom-

etry in this test. Analyses which take into account the widthwise or "plate" effects were in-

vestigated and found to yield results only slightly different from the simple column formula.

The choice of support conditions has a significant influence on the value of the critical load.

The mathematical models allow two conditions--simple support, wherein the ends of the

specimen are restrained from lateral deflection but are free to rotate, and fixed support,

wherein the specimen ends are restrained from both lateral deflection and rotation. Actual

boundary conditions are likely to be less ideal, although probably closer to the latter (e.g. fixed

conditions).

All the analyses which follow used the following properties:

E1 = 18.9 msi V12 = 0.314

E2 = 1.38 msi G12 = 0.688 msi
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These are the values measured for the T300/934 baseline material at room temperature by

Milkovich, et al. [3].

3.3.1 Simply Supported

The derivation of the buckling load for Euler columns can be found in many texts in strength

of materials and virtually every text on elastic stability. The following result is used without

proof:

/_2EI

Pcr- L2

where E is Young's modulus, I is the moment of inertia, and L is the length of the column

(Figure lOa).

For a thin rectangular specimen, of thickness, t, the buckling criterion, in terms of the critical

(_cr -

stress, is:

The stability of a plate simply supported on the loaded edges was considered by Ashton and

Whitney [25]. The out-of-plane displacement is assumed to be of the form:

w = f(y) sin mnx
L

A solution for the stability criterion can be found if:

where (_ and I3 are

f(y) = Ae -ay + BeCy + Ccos(13Y) + Osin(13y)
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the Dij terms are elements of the bending stiffness matrix and N x is the x-direction stress re-

sultant.

In general, the constants A, B, C, and D are found by satisfying the boundary conditions on the

unloaded edges (y=O ; y=W). This results in a set of homogeneous equations and the critical

stress resultant, Nx, is found by setting the determinant of this set equal to zero and minimiz-

ing Nx. Applying this technique to the case where the unloaded edges are free, the minima

is found for the trivial case a=J3=O, yielding:

N x = Dl1(--_--) 2

and since,

Dll - 1 - v12v21

Nx - 1 - v12v21 12

The minimum is obtained for m = 1. The equation written in terms of stress becomes:

,
°cr - 12 1 -- V12V21

This is similar to the column formula and for T300/934 Gr/Ep the difference between the two

is< 1%.
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3.3.2 Clamped Support

The critical load for an Euler column under clamped (fixed) end conditions is easily obtained

using the effective length concept. For a fixed-fixed condition, L,, - L
2'

Tc2EI
Pcr -

(L/2) 2

_ ,,2E( t 12

or four times the simply supported value.

Unfortunately, the plate solution is not as easy to obtain. Ashton and Whitney [25] considered

the stability of symmetric plates using the Ritz method, The stability criterion is satisfied for

stationary values of the following functional:

1. b[ Io2w12 (o2w-2-S0 SO Dll _x2 / + 2D12 _, 0x 2

4066 _ axay J -I'-

a2w)+ _'_2w _2(_y,2 D22 _ c_J2 /
+

The out-of-plane displacement, w, is assumed to be of the form,

m n

W = T_, _ alj(Pl(X)_/j(Y)
i=lj=l

where (p=and _j are the characteristic shapes of beams in free vibration. By using the ap-

propriate beam functions, any of the classical boundary conditions (free, simply supported,

or clamped) can be applied to any edge. Substitution of the assumed form of the displacement

into the above functional and minimization using the techniques of the calculus of variations

yields a set of linear homogeneous equations. This set of equations forms an algebraic
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eigenvalue problem where the lowest eigenvalue corresponds to the buckling load and the

corresponding eigenvector describes the buckling mode.

The details of this method are described by Ashton and Waddoups [26] and Ashton [27]. It

should be noted that this is quite a general approach and this method can be used to inves-

tigate any midplane symmetric plate. The results of this analysis were found to be similar to

those obtained from the column formula (Figure 11).

3.3.3 Effect of Eccentricities

All the analyses in the preceding sections have assumed perfect geometry and loading con-

ditions. A more realistic analysis would include consideration of geometrical imperfections

and load eccentricities. Generally speaking, these effects reduce the critical load, cause

bending to occur throughout the load history (e.g. there is no sharp bifurcation point), and may

change the buckling mode.

Chamis and Sinclair [22] investigated the effect of two types of eccentricities, which they de-

noted "cantilever-type" and "lateral-type" displacement (Figure 10b). They analyzed an ITTRI

specimen, so the geometry of the problem was somewhat different and some of their specific

conclusions probably do not apply to the present case. However, some of their findings are

likely to be generally applicable. One of the most interesting results of their analysis was for

the lateral-type displacement. They found that the buckling mode changed for this type of

imperfection. In all the analyses mentioned thus far, including the cantilever-type displace-

ment, the buckling mode has had a crest at the midspan (L/2) location. For the lateral dis-

placement eccentricity, the mode shift produced buckling crests at the 1/4 and 3/4 span and

a node at the midspan locations. Thus, noted Chamis and Sinclair [22], "back-to-back strain

gages located at specimen midspan may not pick up out-of-plane bending...". They found that
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the type of eccentricity had no effect on the buckling load. Additionally they found that twisting

(plate) type buckling modes were observed for the specimen geometry they analyzed.

3.4 Specimen Preparation and Instrumentation

All composite compression coupons were cut from a single 8-ply (nominal thickness 0.040 in.;

1 mm) unidirectional panel at NASA-LaRC. The loaded edges of the coupons were fiat and

parallel to within 0.001" (0.03 mm). The thickness was found to be irregular, typically varying

0.001-0.002" (0.03-0.05 mm) across the coupon width, although variations of up to 0.008" (0.2

mm) were found.

3.4.1 Tabbing Procedure

All 0 ° coupons were tabbed in an effort to prevent end-crushing failures. The tabs were 0.020"

(0.5 ram) thick steel and cover the entire gripped region. The adhesive used was Dexter-Hysol

EA934 mixed according to manufacturers instructions with 5% (by weight) glass microspheres

added to control bond line thickness. The tabbing procedure is as follows:

• Grit-blast the tab and composite bonding surfaces

• Prime the steel surface with BR127 Primer (a 10% solids epoxy/phenolic primer from the

American Cyanamid Company) and allow to dry

• Carefully weigh out adhesive components and mix thoroughly

• Spread a thin layer of adhesive on the composite and tab surfaces

• Position tabs on composite coupon

• Clamp in jig and allow adhesive to cure for minimum of 24 hours at room temperature
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• Remove excess adhesive and finish the loaded edges to within 0.001" (0.03 mm)

3.4.2 Instrumentation

All compression coupons were instrumented with electrical resistance strain gages. All gages

were located over the geometric center of the test coupon. One side of the specimen con-

tained a three element rectangular rosette (Micro-Measurements WK-O6-O30WR-120) and the

other side contained a single longitudinal ("in-the-load-direction") gage (Micro-Measurements

SK-O6-O5OAH-350).

Due to difficulties in obtaining the rosettes from the manufacturer, some specimens were in-

strumented with three single gages (Micro-Measurements SK-06-O50AH-350) stacked in a

rectangular rosette pattern. The term "stacked" is literally true, the single gages were phys-

ically placed on top of each other. Because it was possible to see the alignment marks thru

the gage backing, the orientations of the grids could be accurately controlled. In the remain-

der of this report, rosettes fabricated in this fashion will be referred to as "stacked" rosettes

and rosettes obtained from Micro-Measurements as such will be referred to as "factory"

rosettes.

All gages were bonded using Micro-Measurements AE-15 Strain Gage Adhesive. This is a two

component epoxy adhesive and was cured at 120 ° F (49 ° C) for six hours under 15 psi (103 Pa)

pressure. Typical instrumented specimens are shown in Figure 12.
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3.5 Testing and Data Acquisition Equipment

All compression tests were conducted at NASA Langley Research Center (LaRC) on a MTS

810 Material Test System with a 100 kip (450 kN) load cell (Figure 13b). Tests were conducted

under stroke (displacement) control at a load rate of 0.0136 in/min (0.35 mm/min).

Strain gage and load cell data were acquired using an Hewlett Packard HP-236 computer and

associated signal conditioning equipment (Figure 13a). The strain gages were connected to

a constant voltage Wheatstone bridge circuit with a three-leadwire system.

A BEMCO Co. environmental chamber mounted in the load frame was used to perform the

cryogenic and elevated temperature testing (Figure 13b). This chamber uses electrical re-

sistance heating elements and liquid nitrogen for cooling. The load cell is located entirely

outside the environmental chamber and was not exposed to the temperature extremes.

3.6 Specimen Mounting and Testing Procedure

The test procedure can be conveniently divided into three activities: (1) mounting the instru-

mented specimen in the test fixture, (2) positioning the fixture in the testing machine, and (3)

performing the mechanical test. Each of these steps will be described in some detail.

Prior to mounting the specimen in the test fixture the width and thickness of the specimen was

measured and recorded. In addition, the loaded edges of the coupon were checked for

flatness and parallelism. The slider and the upper grip were then removed from the fixture,

the coupon was placed in the upper grip, and the side screws were tightened. The upper grip
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Figure 13. Equipment Used for Compression Testing
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(and coupon) was then visually aligned with centering marks permanently inscribed on the

slider. Use of a lamp with a built in magnifying lens facilitated accurate and consistent

alignment. The end screws were then tightened. The alignment was checked and this proc-

ess repeated until the grip was centered on the slider. The slider was then placed in the guide

cylinder and the guide cylinder on the baseplate (with attached lower grip). Once the speci-

men was firmly seated against the baseplate, the side screws in the lower grip were tightened.

The guide cylinder was then gently rotated and the lower grip moved slightly until the guide

cylinder rotated freely and didn't bind against the slider. The end screws on the lower grip

were then tightened. The guide cylinder was then checked for binding and this process re-

peated, as necessary. This final step was the most difficult and required the most judgement

and experience.

The entire process of specimen mounting was eased if the fixture was spotlessly clean. After

a test, there would generally be small bits of graphite, epoxy, adhesive, etc. on the fixture. In

addition, dirt and oils can be transferred from one's hands to the closely mating surfaces or

the guide cylinder and slider. All this detritus and grease should be removed following each

test. It was unnecessary to lubricate the guide cylinder, although this could have been done

if desired (assuming the lubricant was suitable for the test temperature).

The positioning of the test fixture in the testing machine was a relatively simple process. The

top-plate was slid up onto the plunger, the fixture was placed on the steel platen, and slid

under the plunger. After making sure that the ball bearing was in position, the top plate was

lowered onto the guide cylinder until it was firmly seated. The fit between the plunger and top

plate, the slider and the guide cylinder, and the bearing seats in the plunger and slider all

helped ensure axial alignment of the load train. The hydraulic ram of the testing machine was

then raised until slight load was registered. The ram was subsequently lowered so that the

test would begin under minimal preload (e.g. the weight of the fixturing). The strain gage

leads were attached to the data acquisition equipment and the strain gages were balanced.
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Thecouponwasnowfullypreparedfor a room temperature test. The test fixture, with an in-

strumented specimen mounted, is shown in Figure 9.

3.6.1 Elevated Temperature Tests

Tests at other than room temperature called for a few modifications of the previously de-

scribed procedure. For elevated temperature tests, the environmental chamber was heated

until the metal platen reached a temperature of 270-280 ° F (130-140 o C) before the fixture was

placed in the chamber.

This was done in order to minimize the amount of time the test coupon was exposed to ele-

vated temperature before testing. Initial heating of the chamber from ambient conditions re-

quired 2-2.5 hours. Using this procedure, the test fixture and coupon could be brought to a

stable 250 ° F (121 ° C) temperature in 20-30 minutes from insertion in the chamber. Following

testing, the chamber could immediately be opened and the fixture removed. The fixture could

then be disassembled, the broken specimen removed, the fixture cooled, and another speci-

men mounted while the chamber remained at elevated temperature.

3.6.2 Cryogenic Temperature Tests

For the cryogenic temperature tests the fixture was positioned in the chamber (alter specimen

mounting) at ambient conditions. The chamber was then cooled, the test conducted, the

chamber warmed, and the broken specimen removed. Cooling of the chamber required ap-

proximately 3 hours. It was extremely important that the fixture be grease- and moisture-free

before conducting a cryogenic test. FREON was found to be adequate to remove most con-

taminants. The slight overpressure of the liquid nitrogen prevented infiltration, and subse-
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quenticing,bythehumid outside air, but any moisture on the test fixture (especially between

the slider and the guide cylinder) was obviously undesirable. The warming of the chamber

was necessary to avoid damaging it by thermal shock. It had to be brought to near ambient

conditions to remove the large accumulation of frost which occurred during warm-up.

3.6.3 Temperature Monitoring

During elevated and cryogenic temperature tests, the temperature was monitored on the ends

of the upper and lower grips with K-type thermocouples. During testing the temperature dif-

ference between the two locations was < 3° F (< 2° C). Mounting of the thermocouples on the

specimen, while desirable, was impractical due to the small amount and relative inaccessi-

bility of available space. It was felt that the temperature of the specimen would lie very near

the temperature of these two nearby locations. The room temperature tests were conducted

at ambient conditions and no attempt was made to control temperature.

3.7 Data Reduction and Analysis

The data from the compression tests were acquired in the form of raw voltage readings. Data

points were acquired every 1-2 seconds and 30-100-t- data points were acquired in a typical

test. A peak-reading voltmeter was used to record the maximum (failure) load voltage. The

data reduction and analysis procedure consisted of the following steps for each test:

• Conversion of raw voltage data to engineering units (stress, strain)

• Correction of the strain data for transverse sensitivity of the strain gages

• "Averaging" of the strain data to eliminate thru-the-thickness strain variation (bending)

• Preliminary calculation of material properties.
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Conversion of the strain data from raw voltages to engineering units used conventional

Wheatstone bridge calculations [28]. Correction of the strain data for transverse sensitivity

was carried out in the usual fashion for the rosette gages [28-29]. Correction for transverse

sensitivity of the single gage was carried out as outlined by Dally and Riley (Section 10.4 [28])

and using the assumption that the ratio of the transverse/longitudinal strain was the same on

both sides of the test coupon.

"Averaging" of the strain data to eliminate bending effects was done by simple averaging for

the tests in which factory rosettes were used. For tests in which the rosette was composed

of stacked single gages, the averaging took into account the differences in the distances of the

individual grids from the neutral axis (Appendix C).

Following completion of all the tests at one condition (e.g. one of the twelve combinations of

fiber orientation, temperature, and radiation dose) the final calculation of material properties

(E and v) was made. These properties were calculated by fitting quadratic curves through the

data in a least-squares sense (curvilinear regression). Plots showing the data points used in

the regression analysis are presented in Appendix A.

The following example illustrates the analysis method and the details are presented in Ap-

pendix C. Assume it is desired to calculate Young's modulus, E, given a set of stress-strain

data. Young's modulus is defined to be the initial slope of the stress-strain curve. If a function

of the form f(_) = a = A + Bs + CE2 is chosen to represent the stress-strain response, ap-

plication of the least squares criterion yields the following set of equations:

In i ol
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Thesummations are made over the entire range of the mechanical test data and include data

points taken from all tests at the same condition. The total number of data points included in

the summations is denoted "n". The slope of the stress-strain curve, E, is obtained by simply

differentiating: E =da/d_ = B +2CE. Thus an expression for E, instantaneous tangent modulus,

is obtained as a function of the longitudinal strain, _. The initial (elastic) modulus, which is

generally the quantity of most interest, is obtained by setting _=0. Similar calculations yield

Poisson's ratio or properties obtained from an equation of the form x=f(y)= A+By+Cy 2

(Appendix C).

Quadratic curves were used because they were the lowest order polynomial which appeared

to be able to match the behavior of the data. It was recognized that quadratics often tend to

"hook" near the ends of the data (e.g. the origin and locus of failure). The slope of the function

is, obviously, more susceptible to this behavior than the value of the function (in the example

above, E is more susceptible than (_). To counteract this phenomena, one-third of the data

points from each test were "reflected" through the origin into the third quadrant in order to

force the slope to be accurately represented near the origin.

This is a somewhat novel method of analysis and requires some justification. Primary moti-

vation was provided by the nature of the stress-strain data---if often appeared to be quite

nonlinear over the course of the entire test. Additionally, although only initial "elastic" prop-

erties are commonly reported, it is often desirable to be able to conveniently estimate prop-

erties at any point on the stress-strain curve. Finally, it was intended to reduce the amount

of judgement exercised by the analyst when determining properties. When properties are

estimated using linear regression over a limited subset of the available data or "with a

straightedge and pencil", the value produced can be influenced considerably by the biases

of the analyst. It was believed that this method would remove much of this subjectivity, allow

for better reproducibility, and simplify the data reduction task.
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It canbearguedthatthe presentmethodmerelysubstitutesa differentsortof bias,in thata

specificfunctionalform is chosen a priori. However, the specific values of the coefficients in

the assumed functional form are determined by criteria which are applied to different data

sets in a uniform and consistent manner. In any case, the differences between an approach

such as that outlined in this section and the other methods referred to above are generally

small (< 5%).

The strength properties were determined by dividing the maximum load by the appropriate

cross-sectional area. The values for the five tests at each condition were then averaged.

It was, unfortunately, not possible to obtain the failure strains in a similar fashion. The strain

gage data near failure were often unreliable. It was not uncommon for at least one of the

strain gages to be broken at this point in the test. In addition, the maximum load was obtained

using a peak reading meter while the final strain values were not. The failure strains were

calculated from the quadratic (_-E curves, described above, by solving the appropriate

equation for the strain corresponding to the strength (failure stress). When comparisons can

be made, the calculated values and the measured final strain value are in good agreement.
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4.0 Compression Test Results

This section will discuss the results of the compression tests. The compression test matrix is

shown in Table 3. First, the effects of temperature and irradiation on the overall stress-strain

response will be discussed. The degree of non-linearity in the response will be emphasized.

Following this, the specific engineering properties (Young's moduli, Poisson's ratios,

strengths, and failure strains) will be discussed in detail.

For convenient reference, these properties are summarized and tabulated in Table 4. The

stress-strain curves for all the test conditions are included in Figure 14 to Figure 18. These

curves are the quadratic regression curves calculated as described in the preceding section.

The detailed test results and regression analysis used to calculate the properties can be found

in Appendix A. The interval estimates ("error bars") in Figure 20 to Figure 27 are =1=2stand-

ard errors on the mean values. The methods used to calculate the standard errors are out-

lined in Appendix C.
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Table3. TestMatrixforT3001934CompressionCoupons

Radiation
Dose
Baseline
(non-irradiated)

Irradiated

(10,000 Mrads)

Test: Monotonic Corn

Temp.

°F (oc)

-250 (-157)

Room

250 (121)

-250 (-i57)

Room

250 (121)

Jression

Number of Tests

Longitudinal

Material: T300/934 Gr/Ep
Nominal Thickness: 8 plies

5

5

5

Transverse
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Table4. "1"3001934CompressiveProperties

Temp

-250°F

(-157°C)

Room

250°F

(121°C)

Prop

Xc (ksi)

Yc (ksi)

Et (msi)

E2 (msi)

vlz

v21

s_(%)

_'_(%)

Xc (ksi)

Yc (ksi)

El (msi)

E= (msi)

v12

v21

E_(%)

_; (%)

X: (ksi)

Y, (ksi)

Et (msi)

E= (msi)

VlZ

V21

E_(%)

El (%)

Baseline Irradiated

Value ART% Value ARTO_o

241 + 25 228 + 21

56.5 + 86 51.8 + 97

17.2 +11 16,0 +10

2.10 +29 2.14 +23

0.136 -25 0.104 -32

0.0320 -13 0.0324 -28

1.62 +12 1.68 -16

3.26 + 6 2.92 + 10

193

30.4

15.5

1.63

0.182

0.0366

1.45

3.07

126

18.9

15.0

1.80

0.309

0.0791

0.751

1.94

-35

-37

-3

+10

+70

+116

-48

-39

z_m%

-5

-8

-7

+2

-24

+1

+4

-10

188 ---

26.3 ---

14.6 ---

1.74 ---

0,153 ---

0.0447 ---

2.00 ---

2.65 ---

48.3 -74

8.71 -67

14.4 -1

0.666 -62

0.384 +151

0.239 + 435

0.310 -85

1.75 -34

-3

-13

-6

+7

-16

+22

+38

-14

-62

-54

-4

-63

+24

+ 237

-59

-10

ART% = percent change w.r.t room temperature value

AIR% = percent change of irradiated w.r.t baseline value
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4.1 Overall Stress-Strain Response

4.1.1 Longitudinal Response

The longitudinal stress-strain (al - El) responses at different temperatures are shown in Fig-

ure 14a for the baseline material and Figure 14b for the irradiated material. It is readily ap-

parent that the ultimate properties, strength and failure strain, are significantly affected by

temperature in both materials. It is important to note the nonlinearity of the (_-s response.

At cryogenic and room temperature, the curves show a slight "softening" at high loads. This

is expected under compressive !o_d The apparent stiffening at elevated temperature, which

occurs in both materials, was unexpected. Careful examination of the curves reveals that the

initial modulus appears unchanged but the material stiffens as the load increases. Stiffening

has been previously observed in tensile tests of unidirectional T300/934 [3,7]. The stiffening

in tension was attributed to the straightening of initial fiber waviness or to increased alignment

of the fiber's internal structure. Neither of these mechanisms seems very plausible for

compressive loading.

The stiffening observed in compression may be due to increased fiber-fiber interaction. The

matrix is softened, at elevated temperature, to such an extent that it can no longer restrain the

lateral deflections of the fibers as efficiently as it does at lower temperatures. As the load is

increased, the fibers develop additional curvature and eventually interact with each other

leading to an increase in stiffness. This process is illustrated schematically in Figure 15.

The mechanism advanced above is highly conjectural and considerably more experimental

and theoretical work would be needed to prove or disprove it. It can be argued that the rela-

tively large fiber deflections required are unrealistic and that they imply considerable soften-

ing of the _ - & response before the hypothesized interaction, and subsequent stiffening, take
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place. Nonetheless,the abovemechanismis consistentwith certainotherphenomenaob-

servedduringthe mechanicaltesting.

Therelativelylargecurvaturesofthe fibersrequiredin theaboveprocesswouldundoubtedly

leadto high localstressesin the matrix.Theselocalmatrixstressesmaybehighenoughto

fracture the matrix and lead to material failure. This will be discussed in more detail in the

section on failure mechanisms. The large lateral deflections also imply increases in Poisson's

ratio. As will be discussed later in this Chapter, large increases in vl= were measured at the

elevated test temperature for both the baseline and irradiated materials.

The stiffening is not believed to be related to the test method because it wasn't observed in

either of the other test temperatures and wasn't observed in any of the 90 ° tests. Because the

90° coupons fail at lower stresses and are more compliant than the 0° coupons, it is believed

they would be more susceptible to problems with binding in the test fixture.

At room and cryogenic temperatures the matrix stiffness is sufficient to laterally restrain the

fibers such that composite strength more nearly reflects the strength of the fibers. These re-

sults agree well with the observation by Hahn and Williams [24] that a strong correlation exists

between composite longitudinal compressive strength and matrix stiffness. The results also

indicate the need to study the influence of matrix degradation on the compressive properties

of the composite.

The baseline and irradiated ol- sl curves are compared at each test temperature in

Figure 16b-Figure 18b. At cryogenic and room temperatures the curves diverge under in-

creasing load, showing that irradiation "sol_ens _ the response of the material. At elevated

temperature (Figure 18b) the curves don't diverge, however, the irradiated material fails at

stresses considerably less than (approximately one-half) the baseline material.
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4.1.2 Transverse Response

The transverse stress-strain (o'= - _z) responses at different temperatures are compared in

Figure 19 for both the baseline and irradiated material. Comparison of Figure 14 and

Figure 19 indicates that, as expected, the transverse response is more temperature depend-

ent than the longitudinal response. The behavior is also quite nonlinear with the room and

elevated temperature curves becoming nearly horizontal at failure.

The baseline and irradiated _2 - _z curves are quite similar at cryogenic and room temper-

ature (Figure 16a and Figure 17a, respectively), but sharply different at elevated temperature.

(Figure 18a). The difference at elevated temperature is a direct consequence of the reduced

Tg following irradiation. As discussed in the preceding chapter, the TMA (thermomechanical

analysis) results clearly show the material to be in the softening range in the irradiated, ele-

vated temperature condition and the decrease in modulus is expected.

4.2 Young's Modulus

4.2.1 Longitudinal Modulus

Young's modulus in the fiber direction, El, is only slightly affected by temperature (Figure 20,

Table 4). For the baseline material, E1 is 10% higher at cryogenic temperature and 3% lower

at elevated temperature, than the room temperature value of 15.5 msi (107 GPa). The

irradiated material exhibits similar trends with a 10% higher value at cryogenic temperature

and a slightly, 1%, lower value at elevated temperature. The longitudinal modulus of the
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irradiated material is less than that of the baseline material across the entire temperature

range. The difference is -7% at cryogenic, -6% at room, and -4% at elevated temperature.

The behavior of E1 is consistent with the fact that it is a fiber dominated property and that the

fibers are essentially inert to temperatures in this range. The reduction in Et following

irradiation is somewhat difficult to explain, especially since carbon fibers are believed to be

inert to irradiation [3,7]. These changes are probably related to the changes in the matrix and

fiber/matrix interracial properties. In addition, as noted in Chapter 2, the irradiated material

seemed to have a somewhat lower fiber volume fraction, v r, than the baseline. While this

could account for the radiation-induced decrease in Et, the magnitude and cause of the de-

crease in vf remain unclear.

4.2.2 Transverse Modulus

The transverse Young's modulus, E2, is more temperature dependent than Et (Figure 21,

Table 4). For the baseline material, Ez, is 29% higher at cryogenic temperature and 10%

higher at elevated temperature (both with respect to the room temperature value of 1.63 msi;

11.2 GPa). For the irradiated material, E= is 23% higher at cryogenic temperature, and 62%

lower at elevated temperature. The transverse modulus for the irradiated material is slightly

greater than for the baseline material at cryogenic and room temperature (2% and 7%, re-

spectively). At elevated temperature, the irradiated material has a 63% lower modulus than

the baseline material.

Transverse modulus is, of course, highly matrix dependent and generally follows the expected

trends. In particular, the large decrease in E= for the irradiated, elevated temperature condi-

tion can be directly related to the radiation-induced decrease in the glass transition temper-

ature (see Chapter 2 for a discussion of the Tg). The radiation-induced increases in E= at
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cryogenic and room temperature are believed to be due to an increase in the modulus of the

matrix at these temperatures (it will be shown in Chapter 5 that the modulus of the neat resin

increases, following irradiation, at room temperature). The increase in E= for the baseline

material at elevated temperature may be a result of changes in the residual (curing) stresses.

The complexity of the residual stress state, the influence of the transverse fiber properties and

role of the fiber-matrix interface make the situation somewhat unclear.

4.3 Poisson's Ratios

4.3.1 Major Poisson's Ratio (0° test)

Poisson's ratio is defined to be - cy
E'--_' when the stress state is uniaxial (in the x-direction) and

Ey is the strain perpendicular to the load. In the test of a 0 ° coupon, this ratio is called the

major Poisson's ratio and is denoted v12. Plots of the Poisson response (Eyvs E_) for all of the

test conditions are presented in Appendix A. The major Poisson's ratio was significantly ef-

fected by temperature for both the baseline and irradiated materials (Figure 22, Table 4). For

the baseline material, vl= is 25% lower at cryogenic temperature and 70% higher at elevated

temperature, with respect to the room temperature value of 0.182. The irradiated material is

even more influenced by temperature with the cryogenic value being 32% less than and the

elevated temperature value 152% greater than the room temperature value (0.153). The val-

ues of vl= for the irradiated material are lower than for the baseline material at cryogenic and

room temperature, by 24% and 16%, respectively, but 25% greater at elevated temperature.

The increases at elevated temperature are consistent with the argument advanced earlier to

explain the stiffening in 0° coupons, namely that the fibers tend to absorb the load by bending
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andthe matrixfails to provide adequate support to prevent large (fiber) lateral deflections.

This, obviously, leads to larger transverse deformations and increased Poisson's ratios. The

radiation-induced change at elevated temperature, 25% increase in vlz, is also consistent with

this argument. The radiation-induced decreases in vlz at room and cryogenic temperature

may be due to reductions in the residual (curing) stresses [3,7] and may also be related to the

increase in resin modulus (Chapter 5).

The Poisson response has several additional interesting and perplexing aspects. First, the

magnitude of the measured values (i.e. room temperature values of 0.153-0.182) are sub-

stantially less than those reported in the literature for Gr/Ep (0.24-0.40), [20, 22-23]. This, al-

most certainly, is due to the effect of the tabs (and grips) in restraining transverse deformation

in these low aspect ratio compression specimens. If v12 is calculated from the measured val-

ues of vz_, E_, and E= using the reciprocal relationship (E_v21 = E2vl=) the results shown in

Table 5 are obtained. The calculated cryogenic and room temperature values seem reason-

able. The irradiated, elevated temperature (calculated) value is adversely affected by several

factors, the most significant of which is the large increase in v2_ in this condition (to be dis-

cussed below).

In a recent report by Pindera, Gurdal, Hidde, and Herakovich [30] the effect of end constraints

in determining Poisson's ratio under compressive loading is discussed. They investigated the

problem using the finite element method and found that the apparent v, values, from a similar

type of compression test, were predicted to be about about 80% of the actual value. Their

experimental results were in excellent agreement with the numerical predictions. The mate-

rial properties used in [30] are for aramid/epoxy and the specimen geometry is somewhat

different so the results aren't directly applicable to this case. However, it is likely that the

magnitude of the effect is the same (especially when it is noted that the calculated values of

vl= in Table 5 are roughly twice the measured, or apparent, values).
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Table5. CalculatedValuesofMajorPoisson'sRatio

Dose

Baseline

Irradiated
(10,000Mrad)

Temp
OF (°C)

-250 (-157)

Room

250 (121)

-250 (-157)

Room

250 (121)

measured

0.0320

0.0366

0.0791

0.0324

0.0447

0.239

V12

measured

0.136

0.182

0.309

0.104

0.153

0.384

El, measured )
v12, calculated = v21, measured I "_--

_'-2, measured

V12

calculated

0.262

0.350

0.658

0.239

0.378

5.17
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The most disturbing aspect of the Poisson's ratio data is the large variability associated with

it. This variability is most evident in the irradiated material at elevated temperature (Appendix

A). Because similar large variations are not present in the stress-strain and strength data, it

is believed that the variability is associated primarily with the transverse strain measurement.

The strains were measured over a small portion of the coupon surface. Obviously, if the strain

state is non-uniform the measured data could reflect local rather than global response.

4.3.2 Minor Poisson's Ratio (90 ° test)

The Poisson's ratio obtained from the test of a 90° coupon is referred to as the minor

Poisson's ratio and denoted v21. For the baseline material, v21 is 13% lower than the room

temperature value at cryogenic temperature and more than double it (-I-116%) at elevated

temperature (Figure 23, Table 4). These trends are are even more extreme for the irradiated

material. The cryogenic value, for the irradiated material, is 28% lower than the room tem-

perature value, while the elevated temperature value is over 5 times (-I-435%) larger. The

irradiated material has a higher V=l than the baseline material at all three temperatures. The

difference increases with increasing temperature and is 1%, 22%, and 237% at cryogenic,

room, and elevated temperature, respectively.

Quite obviously, the really intriguing result is the elevated temperature behavior of the

irradiated material. It seems apparent that the measured response is indicative of a general

lack of cohesion between the fibers and the matrix. The resistance to transverse deformation

one would expect the fibers in a 90° coupon to provide is simply not present in this condition.

Whether this lack of cohesion is due to a general degradation of the matrix or strictly to

fiber/matrix interfacial effects is indeterminate from this data alone. It should be noted that

the Poisson (Ey - 5,) data have a large amount of scatter, particularly at elevated temperature.
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4.4 Compressive Strength

4.4.1 Longitudinal Compressive Strength

The compressive strength in the fiber direction, X©, is quite temperature dependent

(Figure 24, Table 4). For the baseline material, X= is 25% higher at cryogenic temperature

and 35% lower at elevated temperature. The irradiated material exhibits similar trends with

a 21% greater value at cryogenic temperature and a 74% lower value at elevated temper-

ature. The effect of irradiation is small at cryogenic and room temperature, (irradiated values

3-5% less than the corresponding baseline values) but more substantial at elevated te.-iper-

ature where X= is 62% lower in the irradiated material. The scatter in the data is modest for

longitudinal Gr/Ep compressive strength data.

The changes in X= can be related to changes in the matrix strength and stiffness. At cryogenic

temperature, the matrix is stiffer and stronger (in compression) leading to more efficient sup-

port of the fibers and therefore higher strengths. At elevated temperature the matrix is softer

and weaker leading to less efficient support of the fibers and, hence, lower strengths. This is

particularly evident in the elevated temperature, irradiated condition where the matrix is more

severely degraded and the longitudinal strength is significantly reduced. These points will be

discussed in more detail in the section on failure mechanisms.

4.4.2 Transverse Compressive Strength

The compressive strength in the direction perpendicular to the fibers, Y=, is nearly a linear

function of temperature (Figure 25, Table 4). The transverse compressive strength for the
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baseline material is 85% higher at cryogenic temperature and 37% lower at elevated tem-

perature. For the irradiated material, Y= is 95% greater at cryogenic temperature and 67%

lower at elevated temperature than the room temperature value. The transverse compressive

strength for the irradiated material is lower at all three temperatures. The difference is

modest, -8 and -13%, at cryogenic and room temperature, respectively, when compared to the

-54% difference at elevated temperature.

The strong temperature dependence of Y= is consistent with the known effect of temperature

on polymeric materials. Lee and Neville [2] state that cryogenic temperature increases the

brittleness of epoxies and may provide up to 100% improvement in tensile properties

(strength and modulus). It is reasonable to assume the compressive properties experience

similar improvement at cryogenic temperature. The fact that irradiation reduces Y=across the

entire temperature range is indicative of a general degradation of the epoxy network structure.

4.5 Failure Strain

4.5.1 Longitudinal Failure Strain

The longitudinal failure strain, _, for the baseline material is 12% greater at cryogenic and

48% lower at elevated temperature, both compared to the room temperature value of 1.45%

strain (Figure 26, Table 4). For the irradiated material, E_is 16% lower at cryogenic and 85%

lower at elevated temperature than at room temperature. The s_ values for the irradiated

material are higher at cryogenic and room temperature, by 4% and 38%, respectively, but

59% lower at elevated temperature.
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The temperature dependence of the baseline E_ values follow the same trend as the corre-

sponding X= values and is attributed to the same causes--improved matrix strength and

stiffness at cryogenic temperature and corresponding decreases at elevated temperature•

The radiation-induced increases in E_ at cryogenic and room temperature are consistent with

the corresponding reductions in El under these conditions•

4.5.2 Transverse Failure Strain

The transverse failure strain, sf,, for the baseline material is 6% higher at cryogenic and 39%

lower at elevated temperature than the room temperature ,-al,-e of 3.07% strain (Figure 27,

Table 4) The .......................................... :,,.. ,=r, ........ ; .... h.^ 4no/. k:,..,k,_.,.• Irraulat_u IIIdl._lldl IUIIUW_ LII_ _dlllf¢_ LII_IIU_ WILII I.IIC q*._l_fU_lll_ VC3LIU_ Iu/o II1_111_!

and the elevated temperature value 34% lower than the room temperature value of 2.65%

strain. The irradiated material has a lower s_ at all three temperatures. The difference is

-10%, -14%, and -10% at cryogenic, room, and elevated temperatures, respectively.

These results exhibit the same trends as the Y= data--decreasing values with increasing tem-

peratures and irradiation-induced decreases at all temperatures. The fact that irradiation re-

duced the transverse failure strain at all three temperatures is another indication that

irradiation produces a general breakdown of the epoxy network structure•

4.6 Failure Mechanisms

As shown in the preceding section, the quantities related to material failure--strength and

failure strain--were more influenced by both temperature and irradiation than were the moduli.

In this section, the observed failure mechanisms will be more completely discussed. For the
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purposesofestablishingthe quantities "strength" and "failure strain", failure was previously

defined to be "the point in the mechanical test during which the maximum load was sustained

by the test coupon." There are insights to be gained by reconceptualizing failure as a process

and by attempting to describe that process.

Unfortunately, unidirectional Gr/Ep coupons tend to fail catastrophically and suddenly. This

makes it difficult, if not impossible, to directly observe the failure process. The usual method

is to infer the failure mechanism through examination of the failure surface (at both the macro-

and micro-level), analogies to familiar structural failure modes, and comparison between

theoretical (micromechanical) models and experimental results. This section will describe the

type of compression failures observed in this study and examine some of the models used to

describe the failure process.

4.6.1 Longitudinal Failure

4.6.1.1 Experimental Observations

At cryogenic and room temperature, the coupons tended to fracture across the entire width

of the coupon or fail in the grip region (Figure 31b, Figure 32b). In both cases there was ex-

tensive longitudinal splitting. Examination of the failure surfaces was difficult because of the

longitudinal splitting and fragmentation. For the room temperature coupons which failed in

the grip region it was sometimes possible to observe what appeared to be shear crippling (to

be further discussed below).

The cryogenic strength values are greater than the highest tensile strengths measured by

Milkovich, et al. [3]. It has been reported in the literature [31] that the strength of carbon fibers
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may be lower in compression than tension due to the fiber microstructure. In a study of

compressive failure mechanisms, Chamis and Sinclair [22] considered fiber compressive

failure a possible failure mechanism and state that the fiber compressive strength may be

taken to be 90% of the tensile strength. Making these assumptions leads to strength pred-

ictions (using simple rule of mixtures, X¢ = vfXf + Vr,Xm) of approximately 260-270 ksi for the

composite. Because these values are relatively close to the measured strength values at

cryogenic temperature (especially for the baseline material) it is reasonable to conclude that

pure compressive fiber failure may be the operative failure mechanism at this temperature.

At elevated temperature (Figure 33b), the irradiated coupons clearly exhibited shear crippling

failures. The type of failure shown in Figure 28 was clearly visible in three of the five coupons

tested at this condition. The other two specimens tested at this condition were completely

fractured (e.g. broken into two pieces) and it is suspected that the crippling region was de-

stroyed in the wake of fracture. The baseline, elevated temperature coupons appeared to fail

by extensive longitudinal splitting, as there was no clearly visible fracture area. After removal

of the tabs, there was usually a fractured area near the ends of the specimen which had failed

in a bearing (end crushing) mode. Microscopic examination of this area revealed existence

of crippling regions similar to those referred to above. Because the failure occurred in the

grip region and because it is impossible to determine whether the crippling caused the split-

ting or vice-versa, it is less clear whether shear crippling is the operative failure mechanism

in this condition.

4.6.1.2 Compressive Strength Models

Compressive failure of unidirectional composites loaded in the fiber direction has been the

subject of a large number of theoretical and experimental investigations [22-24, 32]. Several

failure mechanisms have been proposed. Most models begin with a fiber microbuckling

model. However, it is widely recognized that the simple microbuckling models (both the
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symmetricandantisymmetric,or shearandextension,modes)yieldstrengthvalueswell in

excess of those observed experimentally [31]. Therefore, most researchers incorporate non-

linear matrix properties or initial fiber curvature--most often both. Including these effects al-

lows the models to produce results comparable to those obtained experimentally.

Unfortunately, the experimental results are inconsistent and sensitive to test method and

various global failure mechanisms. In addition, the models are dependent on some

parameters--in particular, initial fiber curvature--which are difficult to measure independently

[24].

A recent paper by Hahn and Williams [24] presents a shear crippling mechanism which con-

sists of the following events:

= Attainment of critical load

= Local kinking or microbuckling of a few fibers

= Formation of regions of shear crippling

= Gross composite failure

They also note the existence of other failure modes--longitudinal splitting and pure

compressive fiber failure--and that the observed mode depend on "various material properties

and geometrical parameters'. In particular, they observe that a strong correlation exists be-

tween compressive strength and matrix modulus. They also mention that it is possible, if not

likely, that kink bands in unidirectional material are destroyed in the wake of failure.

In view of the experimental evidence which has been presented and the model described

above, the failure process would seem to be well understood and it would seem reasonable

to assume that the longitudinal compressive strength could be calculated fairly accurately.

Unfortunately, this is not the case. Because of the difficulty in independently determining

some of the model parameters, most notably the characteristic size of the initial fiber

imperfection, it is difficult to predict the strength a priori. A common method is to assume a
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known set of "typical" values for all but one parameter, including the compressive strength

and "back out" a "typical" value for the unknown parameter (i.e. initial fiber curvature). This

is similar to the method presented by Tsai [20], in which he assumes knowledge of a reference

state and then predicts the changes in various properties based on deviations of the relevant

parameters from the reference values.

For a material with strong fibers and for which the shear stress-strain behavior can be ap-

proximated as elastic-perfectly plastic, Hahn and Williams derive the following equation:

_y

Xc = v_
_y + = -£-

where

X¢ longitudinal compressive strength

Vf fiber volume fraction

_y

7y

f_
L

shear yield stress

shear yield strain

characteristic size of the initial fiber curvature

If 7y is replaced by _y
_-, where G is the composite shear modulus, then:

Consider using the cryogenic temperature results for the baseline material as a reference

fo
state to obtain the parameter -_-. This choice of reference state isn't entirely arbitrary. As

discussed earlier, the strength in this condition (baseline, cryogenic temperature) is very close

to that obtained using a simple rules of mixtures expression.
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Table6. CompressiveStrengthModelParametersand Results

Radiation X= (ksi) X= (ksi)
Dose Temp. G_2(msi) "c_(ksi) predicted measured

Baseline

vf=0.631

Irradiated

(10,000 Mrads)

vf=.61

Cryogenic

Room

Elevated

Cryogenic

Room

Elevated

1.17

0.688

0.563

1.12

0.777

0.397

7.34

7.56

3.94

7.25

6.83

2.33

2413

199

125

228

192

75.5

241

193

126

228

188

48.3

1from Milkovich, et al. [3]

2estimated from curves in [3]

3reference condition for predicted values

G _y ]Xc, predicted = Vf - y + 0.0129 G
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The composite shear modulus was measured by Milkovich, et al. [3] and the shear yield stress

can be estimated from the stress-strain plots for the 10 ° off-axis tests conducted in [3]. The

value of all the relevant parameters are listed in Table 6.

Using the values at the reference state to "back-out" a value for the initial fiber imperfection:

fo _ 0.0041
L

Substituting this into the strength equation:

G_y ]Xc = vt '¢y +_--_12gG

The values calculated from this equation agree quite well with the experimental results in all

but the irradiated, elevated temperature condition (Table 6).

In view of the agreement between the "predicted" and measured values, the compressive

strength would seem to be easily and accurately estimated from the shear stress-strain data.

This conclusion must be tempered by the realization that many of the assumptions used in

deriving the strength equation have been violated in the application of it to this problem. For

instance, the shear stress-strain behavior was assumed to be elastic-perfectly plastic. A

cursory examination of the results of Milkovich, et al. [3] reveal this to be, at best, a gross

oversimplification. In addition, the characteristic size of the imperfection has been assumed

to be constant when it is likely to be effected by temperature and, possibly, irradiation.

Why then, do "the numbers" look so good? It is believed that microdamage, in particular

fiber/matrix debonding and matrix microcracking, occurs during loading. The model devel-

oped in [24] and used above takes a fiber as the free body and applies the matrix reactions

as equivalent loads (forces and moments). It is believed that the local microdamage, for in-

stance fiber/matrix debonding, may produce effects similar to the effect of the matrix becom-
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ing perfectly plastic. Thus the model yields the proper correlation, alfhough the actual

mechanism may not necessarily be the mechanism contained in the model.

In summary, it appears that the shear crippling mechanism provides an adequate and rational

explanation for the failure of unidirectional T300/934 Gr/Ep. The mechanics of failure at the

micro-level are likely to require further study, but the model seems conceptually satisfying and

capable of producing excellent quantitative results as well.

4.6.2 Transverse Failure

4.6.2.1 Experimental Observations

The 90° specimens all failed, as expected, by fracturing on planes parallel to the fiber direction

(Figure 31a-Figure 33a). The number of fractures observed (i.e. the number of pieces the

specimen was broken into) was affected by temperature and irradiation. Cryogenic temper-

ature tended to produce a greater number of fractures and elevated temperature a lesser

number with respect to room temperature in both the baseline and irradiated conditions. In

addition, the irradiated specimens tended to fracture into fewer pieces at all temperatures.

This tendency was especially noticeable at elevated temperature where the coupons tended

to crush slowly rather than break sharply. Many of the cryogenic and room temperature

specimens exhibit "spearhead" fractures, where it appears the fracture initiated at the center

of the specimen followed by the two sides shearing off independently (Figure 29b).
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Figure 29. Transverse Failure Angles of 90 ° T300/934 Compression Coupons
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4.6.2.2 Prediction of Fracture Angle

In contrast to the extensive work on longitudinal failure modes, the transverse compressive

strength has received relatively little attention in the literature. This reflects the fact that

transverse compressive strength is less frequently a critical design parameter. Collings [33]

investigated transverse compressive behavior in unidirectional Gr/Ep and outlined a method

for estimating fracture angle. In terms of the coordinates in Figure 30, he assumed that the

2-3 plane was a plane of isotropy and that "...failure will occure on a plane where the shear

stress reaches the shear strength under the corresponding normal compressive strength".

Collings [33] obtained this shear strength experimentally and obtained good agreement be-

tween his predicted and experimental fracture angles.

Similar results can be obtained by applying a quadratic failure criterion to the stress state on

the n-t plane (see Figure 30). For example, if the Tsai-Wu tensor polynomial is used with all

interaction terms set to zero the following equation is obtained :

02[F33 - F44] c0s40 + [F30 + F4402] cos20 -1 = 0

Again using the assumption of transverse isotropy:

Zc = Yc Zt = Yt

1 + 1 1 F44 _ 1
F3 = Y-T Y--_" F33- YtYc $23

The value of 0 is obtained by setting _ = Y¢ and solving the equation for e. Calculations reveal

that 0 ranges from 60-80° with the lower values corresponding to elevated temperature and

higher values corresponding to cryogenic temperature.
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It was not possible to determine the fracture angle accurately enough to evaluate whether

they followed the calculated values quantitatively. However, they appear to follow the pre-

dicted trends (e.g the angle is generally greater at cryogenic and room temperature than at

elevated temperature).
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5.0 Neat Resin TenSile Tests

The second major thrust of this study was an investigation of the effects of elevated temper-

ature and electron irradiation on the tensile properties of the neat (unfilled) Fiberite 934 epoxy

resin. The specimen fabrication and preparation are described in detail. Following this, the

test procedures and equipment are described and, finally, the results of the neat resin tests

are presented and discussed. It is uncertain how closely the properties of the epoxy resin

when cured in the neat (unfilled) form correlate with the properties of the resin as a matrix

material in a composite. Therefore, this chapter will deal only with the neat resin properties.

The next chapter will examine the use of these properties to help explain the changes ob-

served in composite properties.

5./ Specimen Fabrication and Preparation

The properties of all materials are "dependent on the processes used to form or fabricate them.

In the case of epoxy resins, it is widely recognized that the properties of the cured resin can

be tailored to meet the requirements of the intended use by manipulation of the resin formu-
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lation and cure cycle. Epoxies are thermosetting polymers which form strong rigid network

structures with good thermal and chemical stability. The brittle nature of the epoxies can

make it difficult to obtain consistent and reliable epoxy tensile test data [34].

There are two principal methods for fabricating epoxy tensile specimens--casting to net shape

and machining from relatively large sheets or blocks of material. Both methods have their

advantages and disadvantages. Because of the brittle nature of cast epoxies, they are difficult

to machine using conventional methods [35], and it is sometimes difficult to obtain large

sheets or blocks of the cured material. However Chiao, et al. [34] found these to be less se-

rious difficulties than those encountered in casting individual specimens to net shape and re-

commended machining specimens from sheets. An additional advantage of this method is the

ability to cut around voids or other flaws in the material.

As would be expected, the primary advantage of the other method, casting to net shape, is the

avoidance of machining operations. The disadvantages of this method are the necessity to

produce molds and the elimination of voids and other irregularities from the cast specimens.

Additional problems can be encountered if metal molds are used, for example, the surface

flaws caused by the mismatch in thermal expansion properties [34] and contamination of the

surfaces by release agents [35].

After weighing all these factors, it was decided to cast specimens to net shape in silicone

rubber molds. The specimen shape chosen was the small "dog-bone" specimen (type V) from

ASTM Standard D638-82a [18]. The small specimen was chosen because of the limited

amount of resin available and to maximize the number of specimens which could be irradiated

at one time.

The remainder of this section will describe the production of molds, the casting and curing

procedure and the final shaping of the cured specimens.
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Figure 34. Neat Resin Specimen Fabrication Sequence
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Figure 35. Method Used to Produce Nest Resin Molds
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5.1.1 Mold Production

The molds were produced from silicone rubber, RTv60, in a manner based on that of Fanter

[35]. An aluminum "master" specimen was fabricated according to the dimensions given in

ASTM Standard D638-82a [18]. The thickness of this master specimen was 0.040". The molds

consisted of two pieces--a bottom, containing the actual mold cavity and a cover, simply a fiat

piece of material (Figure 34). The pieces were formed by placing the master specimen in the

bottom of a small box and filling this box one-half full of silicone rubber (Figure 35). The cover

was molded in a shallow box at the same time. After pouring, the RTV was allowed to cure

overnight at room temperature. The two pieces were then removed from their molds and

rt_friir_¢l f_r 4 hnllr_ _t the. maximum temnerature used for curinq the epoxy (350 ° F; 177 °

C).

5.1.2 Casting and Curing

As noted earlier, the properties of epoxies are dependent on the cure cycle. It is particularly

important to control the maximum temperature and the time at this temperature during the

cure cycle. Time at maximum temperature is the factor which most influences the density of

the cured material.

In the actual casting process other factors are also important. The most significant of these

is the removal of solvents and entrapped gases (including water), both of which lead to void

formation. The resin used in this study was in 20-30% acetone solution and solvent removal

proved to be a bothersome problem.

The casting process used in this study consisted of the following steps:
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• Solvent removal

• Filling open mold cavities

• Gelation

• Covering molds

• Completion of cure cycle

The casting was carried out in a Hotpack Model 734 vacuum oven; both the heat and vacuum

capabilities were found to be useful for solvent removal. The specimens were cast in batches

of five, with an average of three acceptable specimens being produced per batch. Approxi-

mately 12-15 ml of the liquid resin were poured into a 50 ml beaker and the beaker was then

put in the cool (< 1000 F) oven. The resin initially had low viscosity and was easy to pour and

measure. It is necessary to use a relatively large container because during processing the

resin would tend to foam up to several times its quiescent volume.

The molds were thoroughly cleaned with alcohol and placed in the oven along with the beaker

of resin. The oven was closed, approximately 20-25 in Hg. of vacuum were drawn, and the

temperature was set at 200 ° F. It is important to note that the oven responded slowly to tem-

perature changes, particularly under vacuum, and it would take a considerable length of time

(1.5-2 hrs) to reach a stable 2000 F temperature. The acetone would begin to boil off in the

100-150 ° temperature range. During this phase of the casting operation, it was necessary to

watch the solution carefully to avoid boil over. Partial release of the vacuum and occasionally

opening the oven and stirring the resin often helped expedite solvent removal. Higher initial

vacuums tended to produce problems with violent and sudden foaming of the resin.

Once the acetone began to boil off, the vacuum could slowly be increased to 30 in Hg (1 atm).

This phase often involved frequent adjustments to the vacuum pressure. Eventually, the

temperature would stabilize near 200 ° F (100 ° C) and most of the bubbling would cease.
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At this point the oven was opened, the molds filled, and the vacuum redrawn. As is charac-

teristic of epoxies, the resin would usually foam up at this point. After the foam subsided this

process would be repeated until the molds remained full. The temperature was then slowly

increased to 2500 F (121 ° C) and held constant until all bubbling ceased and the resin began

to gel. The oven was opened and the covers were placed on the molds. The resin was ex-

tremely thick and partially cured at this point. It was desirable to cover the molds as quickly

as possible to minimize the heat loss during this phase. Once all the molds were covered, the

oven was closed and the temperature was raised to 350 ° F (177 ° C). This final temperature

rise usually took about an hour.

The remainder of the cure cycle took place under atmospheric pressure and simply consisted

r,f hr_ldinn th_ ntl_n fomn,'_r_Jllr_ _t _"II;N 0 I:: frlr t'_nl_ hf'tllr Th_ nv_n f_rnn_r_tllr_ w_ _ln.q_lv

monitored during this time and allowed to vary no more than 4-2 ° F (4-1.5 ° C). Following

completion of the cure cycle, the specimens were removed from the molds, the molds

cleaned, and the process begun again. It should be noted that the specimens are fragile and

care should be taken in removing them from the molds to avoid breakage.

5.1.3 Final Specimen Preparation

Final shaping of the specimens consisted of trimming offthe excess material ("flash") left from

the casting operation and included inspection for visible voids.

The excess material was removed with a razor blade and file, with the final sanding of the

edges accomplished with 400 grit sandpaper. Considerable care was taken to ensure that the

finishing strokes were made parallel to the long axis of the specimen (i.e. in the load direc-

tion). This finishing process involved only the edges of the specimens. The top and bottom

cast surfaces were smooth and didn't require further polishing or sanding.
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Followingthis preparation, the specimens were slowly heated to 350 ° F (177 ° C) in a forced

air oven, held at this temperature for an hour, and slowly cooled to room temperature. The

specimens were placed between smooth glass plates during this process. This thermal cycle

was an attempt to "even-out" the small differences in cure cycles between different batches

of specimens.

The width and thickness of all specimens were measured to the nearest 0.001 in (0.025 mm)

at three locations in the test section: in the center and near the ends of the narrow section.

These measurements were found to vary < 0.003 in (< .08 mm) between the three locations.

The averages of the three measurements were used to calculate the cross-sectional area for

stress calculations.

5.1.4 Instrumentation

The neat resin tensile specimens were each instrumented with three electrical resistance

strain gages. Two of the gages (Micro-Measurements EA-O6-O62AQ-350) were mounted,

back-to-back and centered in the test section, in the load direction. The remaining gage

(Micro-Measurements EA-O6°O45AL-350) was oriented transverse to the load direction and

above one of the longitudinal gages. All gages were entirely within the narrow test section

of the specimens. The two longitudinal gages allowed thru-the-thickness strain variation, due

to either bending loads or initial specimen curvature, to be averaged out. The transverse

gage was used to determine Poisson's ratio.

All gages were llbn_ded using Micro-Measurements Strain Gage Adhesive AE-15. The adhe-

sive was cured at 120 ° F (49 ° C) for six hours under 15 psi (103 Pa) pressure. Typical instru-

mented specimens are shown in Figure 36.
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5.2 Test Method

The test method was relatively simple compared to that used for the compression tests de-

scribed earlier. All the neat resin tests were conducted at Virginia Tech using a servo-

hydraulic Instron testing machine (model 1351) with a 20 kip load frame. A 2 kip load cell was

"piggy-backed" in the load train to allow accurate measurement of the small loads involved

in these tests.

The specimen grips were made of aluminum and were held against the specimen by four

screws (Figure 37). The grip faces were lined with Crocus cloth to prevent slippage. The

specimen was installed in the grips using an alignment jig which ensured constant grip sep-

aration and facilitated accurate centering of the specimen. All joints used to connect the grips

to the load train of the testing machine were made with pin connections. All tests were con-

ducted under stroke (displacement) control at a constant rate of 0.033 in/min (0.85 mm/min).

An ATS environmental chamber was mounted in the test machine for the elevated temper-

ature tests. This chamber provides heat by forced convection of air over electrical resistance

heating coils. Temperature was monitored using a K-type thermocouple attached to the

specimen grips.

The strain gage and load cell data were acquired using an Orion Datalogger and IBM PC-AT.

The Orion employs a constant current type Wheatstone bridge and provides bridge excitation

only during the actual strain measurement. This minimizes the effects of self-heating of the

strain gages. The data are converted to stress and strain units during data acquisition and a

stress-strain curve is generated using a software package developed at Virginia Tech,

MATPACO. After testing the data were uploaded to the IBM mainframe at Virginia Tech for

further analysis.
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5.3 Data Reduction and Analysis

The data reduction and analysis calculations were similar to those used for the compression

test data. The strain gage data were corrected for transverse sensitivity and averaged to

eliminate the effects of thruothe-thickness strain variation as previously described (Chapter 3,

Appendix C). Three replicate tests were run at each condition (Table 7). The test data and

the detailed test results are presented in Appendix B.

5.3.1 Consideration of Reinforcement Effects

The use of strain gages on low modulus materials and thin sections often raises the question

of reinforcement effects. That isl to what degree does the presence of the strain gage alter

the very strain state that the gage is intended to measure? There are, in general, two types

of reinforcement: local and global. When the overall stiffness of the gage is of the same order

as that of the test specimen, the gage carries a non-negligible portion of the load and this is

called global reinforcement. Local reinforcement refers to strain transmission errors due to

shear lag at the specimen/gage interface. This type of reinforcement can be a problem even

on large sheets of low modulus materials since the gage itself produces local perturbations

in the strain field. Perry [36] provides an excellent discussion of these and other difficulties

which limit the accuracy of strain gage measurements.

In the present situation, the thickness and width of the strain gage and specimen are of the

same order, additionally the effective modulus of the strain gage is actually somewhat higher

than that of the specimen. This presents an almost perfect case of global reinforcement. The

following analysis was conducted in order to gain a quantitative idea of the probable error in

the calculated material properties.
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Table7. Fiberite934TensileTestMatrix

Radiation Temp Number of
Dose o F (o C) Tests

Baseline

(non-irradiated)

Irradiated

IU,UUU IVll ClUb}

Room

25O

(121)

Room

250

(121)

Test:

Material:

Specimen:

Monotonic Tension

Neat Fiberite 934 Epoxy

ASTM D638-82a Type V
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Figure 38. Geometry for Consideration of Strain Gage Reinforcement Effects
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Assume that the total applied force, P, is shared by the gages, P0, and the specimen, P,, in the

area under the gages (Figure 38).

P = Ps + 2Pg

Assume that the gages have isotropic effective properties and are in a state of uniform plane

stress. Using Hookes Law,

AgEg
Pg = CrgAg - [A x 4- vgAy]

(1 - v2)

If the specimen is also assumed to be in a uniform state of plane stress, c,,

P = OsA s + 2OgAg

2Eg [ A-_'] ^

The above equation allows for the correction of the stress value to more accurately reflect the

stress in the specimen. Note that if the width of the specimen and the strain gages are equal

this equation can be derived using classical lamination theory. The above equation corrects

for the reinforcement due to elastic modulus mismatch, but not Poisson ratio mismatch. If the

specimen and gage are assumed to be the same width it can easily be shown that this affect

is negligibly small for isotropic materials. For orthotropic materials, the Poisson's ratio can

be quite small in some directions (i.e. v21)and the Poisson's ratio mismatch becomes a more

important problem.

It should be noted that the above analysis is very simplified and doesn't consider the fact that

the strain gage reinforcement occurs over a small portion of the specimen length and neglects

transverse shear deformation.

Neat Resin Tensile Tests 107



Calculations using the above equation and effective gage properties (obtained from Micro-

Measurements) reveal that the error in neglecting the reinforcement effect is < 10% in

magnitude and is negative in sign. Thus, the true modulus of the specimen is likely to be

somewhat less than the apparent modulus calculated by ignoring reinforcement effects. The

magnitude of the error is inversely related to the specimen modulus (e.g. the magnitude of the

error increases as the specimen modulus decreases).

For the results to be presented below, the reinforcement effect was not taken into account and

the stress used in calculations was simply P/A. Therefore, the quoted modulus values are

probably somewhat higher than the true modulus of the material, particularly at elevated

temperature.

5.4 Results

This section presents the results of the Fiberite 934 neat resin tensile tests. For convenience,

the properties are tabulated in Table 8. The stress-strain curves for all conditions are shown

in Figure 39 and the Poisson response in Figure 40.

After irradiation there was a dramatic color change in the specimens. Prior to irradiation they

were transparent and an amber, slightly reddish, color. During irradiation they became dark

and virtually opaque. In very thin sections (i.e. near bubbles), it was possible to see through

the material and it was a very deep green color.
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Table8. Fiberite934TensileProperties

Temp Prop

Room

E

V

G

OpL

(msi)

(msi)

(ksi)

O'ul t

_ult

E

V

+ 250 ° F G

O'pL

O'mo X

Emax

(ksi)

(%)

(msi)

(msi)

(ksi)

(ksi)

(%)

Baseline

Value

0.674

0.363

0.247

3.42

8.53

1.48

0.489

0.341

O.182

2.44

10.3

3.05

O,/o A RT

-27

-6

-26

-29

+21

+ 106

Irradiated

Value

0.799

0.373

0.291

5.15

10.9

1.55

0.501

0.368

0.183

1.34

6,61

2.54

%ART

-37

-1

-37

-74

-39

+64

% AtR

+19

+3

+18

+51

+28

+5

+2

+7

n.c.

-45

-36

-17

%ART = percent change w.r.t room temperature value

%AIR = percent change of irradiated w.r.t, baseline value

G- E
2(1 + v)
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Figure 39. Fiberite 934 Tensile Stress-Strain Response
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5.4.1 Young's Modulus

Young's modulus, E, is significantly affected by both temperature and irradiation (Figure 39,

Table 8). The modulus of the baseline material is 27% lower at elevated than at room tem-

perature. The irradiated material behaves similarly, with a 37% lower modulus at elevated

than at room temperature. The irradiated material has a higher modulus than the baseline

at both temperatures. The difference is 19% at room temperature and 2% at elevated tem-

perature. It should be noted that at elevated temperature, the irradiated material behaves

more non-linearly than the baseline material.

The decreases in E at elevated temperature are expected and consistent with the known effect

of temperature on polymeric materials. Based on the results of the composite tests, it was

expected that a more substantial reduction in the modulus of the irradiated material would

occur at elevated temperature. The discrepancy between expected and actual behavior is

believed to be a result of differences in the structure of the epoxy when cured in the presence

of fibers and when cured in the neat (unfilled) form or to differences in the material/radiation

interaction between the composite and neat resin materials. The neat material has a some-

what higher softening point than the composite. Therefore, the composite is nearer to its Tg

at the elevated test temperature (250 ° F; 121 ° C) than is the neat resin.

5.4.2 Poisson's Ratio

The Poisson's ratio was little affected by either temperature or irradiation (Table 8,

Figure 40). The values at elevated temperature were 6% lower for the baseline material and

1% lower for the irradiated material (w.r.t. the corresponding room temperature values). The

irradiated specimens had higher Poisson's ratios at room and elevated temperatures, by 3%

and 9%, respectively, than the corresponding baseline specimens.
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The Poisson response was essentially linear and the values were were consistent, 5% coef-

ficient of variation or less, in all conditions. (Figure 40, Appendix B)

5.4.3 Shear Modulus

The shear modulus, G, was calculated using the measured values of E and v and the E, G, v

relationship for isotropic, elastic materials (G - E ). The changes in G are essentially
2(1 + v)

the same as those in E. This is result of the nearly constant value of v in all conditions. The

scatter in the shear modulus values is modest with less than 5% coefficient of variation in all

conditions.

5,4,4 Ultimate Stress

The ultimate tensile stress of the baseline specimens was 21% higher at elevated temper-

ature with respect to the room temperature value (Table 8). The irradiated material exhibited

the opposite behavior, with the elevated temperature value being 39% lower than the room

temperature value. At room temperature, (_u_twas 28% higher for the irradiated specimens,

while at elevated temperature it was 39% lower for the baseline specimens.

There was considerable scatter in the ultimate stress data at elevated temperature. It is un-

certain whether this scatter was coincidental or related to the temperature. All specimens

failed at the edges of the strain gages or solder tabs. It is believed that one of the by-products

of the strain gage reinforcement effect was the creation of what is essentially a re-entrant

corner at these locations. In addition, it is possible that the specimens sustained local dam-

age during gage installation (i.e. during surface preparation or soldering). In view of these
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considerations, the measured maximum stresses may not accurately reflect the strength of

the material.

5.4.5 Ultimate Strain

The ultimate tensile strain was greater at elevated temperature in both the baseline and

irradiated specimens, by 10% and 65%, respectively (Table 8). The irradiated specimens had

a 5% higher ultimate strain at room temperature and 17% lower failure strain at elevated

temperature than the corresponding baseline specimens.

The ultimate strain values, like the strength values, exhibited significant scatter at elevated

temperature. The comments made in the discussion of tensile strength apply equally to the

results of this section.

5.4.6 Proportional Limit

The proportional limit, O'pL, is the stress level at which the stress-strain response deviates from

linearity. The proportional limit was lower, in both the baseline and irradiated material, at

elevated temperature, by 29% and 74%, respectively. At room temperature, GPL of the

irradiated material was 28% greater than that of the baseline material. At elevated temper-

ature, however, the irradiated material exhibited a 45% lower OPLthan the baseline material.

In contrast to the strength and ultimate strain, the values of _PL were consistent. The coeffi-

cients of variation were less than 5% in all except the irradiated, elevated temperature con-

dition where it was 14%.
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6.0 Discussion

This chapter will discuss the results in this study and how they relate to the previous work of

Milkovich, et al. [3] and Reed, et al. [7]. In particular, the tensile and compressive properties

of the T300/934 composite will be compared and the neat resin results will be compared to the

relevant composite properties.

6.1 Comparison of Tensile and Compressive Composite

Properties

In this section the trends in the composite properties, under tensile and compressive loading,

will be discussed. The tensile properties, unless otherwise noted, are those reported by

Milkovich, et al. [3] and the compressive properties are those obtained during this study.

The tensile and compressive properties exhibit similar trends at elevated temperature, but

opposite trends at cryogenic temperature. In comparing the baseline and irradiated proper-
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ties, the trends are reasonably similar at all temperatures. The compressive properties, in

general, show a greater change with respect to both temperature and irradiation. For clarity,

the tension and compression properties will be denoted by "t _ and %" subscripts, respectively.

The results for each of the properties measured in both studies will now be summarized. For

convenient reference, the tensile and compressive properties are presented in Table 9.

• El: In tension, Elt, is virtually unaffected by temperature with less than 5% variation in

all cases. In compression, Elc, shows somewhat more variation with 10% increases at

cryogenic temperature in both the irradiated and baseline conditions. In all cases, Eli is

greater than E1¢.

• E2: The trends in transverse modulus are similar in tension and compression. The

transverse modulus increased 23-39% at cryogenic temperature with Ezt increasing more

than E2c. For the baseline material at elevated temperature, Ezt was 10% lower and Ez=

10% higher than their respective room temperature values. For the irradiated material,

however both E_ and Ez= were reduced, by -30% and -62%, respectively. The irradiated

material had a higher transverse modulus (in tension and compression) at cryogenic and

room temperatures than the baseline material. Similarly, both Ezt and E2cwere lower for

the irradiated material at elevated temperature. In all conditions, except for the irradiated

material at elevated temperature, Ezt is lower than E2=.

• Vlz: Poisson's ratio was significantly affected by temperature and irradiation in tension

and compression. The value of v12=decreased at cryogenic temperature, but the value

of v12tincreased (or was unchanged). Both v12cand v_2tincreased at elevated temperature,

however, the percentage increases in vlz_ were much larger than those in v_zt. The

irradiated material had lower v_2 at room temperature and higher v_2 at elevated temper-

ature (compared to the baseline), in tension and compression. At cryogenic temperature,

the irradiated material exhibited a higher v_=t,but a lower v_2_. In all cases v_=twas greater

than v12c. Some of the reasons for this were discussed in Chapter 4.
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Table9. TensileandCompressivePropertiesofT3001934

Temp

-250OF

Room

250OF

Prop

X

Y

S

El

E=

v_t

v21

G12

X

Y

S

E,

E2

V12

Vtl

G12

X

Y

S

E,

E2

V12

VZl

Glz

Baseline

Tension*

Z_RT%

141 -36

4.56 -51

7.34 -26

18.6 -1.6

1.83 33

0.313 n.c.

1.17 70

222 ---

9.37 ---

9.92 ---

18.9 ---

1.38 ---

0.314 --

0.688 ---

Irradiated

Compression

_RT%

241 25

56.5 86

17.2 11

2.10 29

0.136 -25

0.0320 -13

... ___

30.4 ---

15.5 ---

1.63 ---

0.182 --

0.0366 ---

Tension*

A,T%

127 -43

2.81 -60

7.25 -22

19.2 n.c.

2.12 39

0.368 30

1.12 44

223 ---

6.98 ---

9.25 ---

19.3 ---

1.52 ---

0.283 --

0.777 ---

Compression

Z_,T%

228 21

51.8 97

16.0 10

2.14 23

0.104 -32

0.0324 -28

... ...

III
26.3 ---

14.6 ---

1.74 ---

0.153 ---

0.0447 ---

A_R%

Tens.* Comp.

10 -5

-38 -8

-1.2 ---

3.2 -7

16 2

18 -24

--- 1

-4.3 --

n .c. -3

-26 -13

-6.8 --

2.1 -6

10 7

-10 -16

--- 22

13 ---

194 -13 126 -35 162 -27 48.3 -74 -16 -62

6.76 -28 18.9 -37 5.88 -16 8.71 -67 -13 -54

5.97 -40 ..... 4.06 -56 ....... 32 ---

19.0 n.c. 15.0 -3 19.8 2.6 14.4 -1 4.2 -4

1.24 -10 1.80 10 1.06 -30 0.666 -62 -15 -63

0.345 9.9 0.309 70 0.397 40 0.384 151 15 24

.... 0.0791 116 ..... 0.239 435 --- 237

0.563 -18 ..... 0.397 -49 ....... 29 --

All properties in U.S. Customary units (e.g. strengths in ksi, moduli in
msi, and strains in percent)

_RT% percent change from room temperature value
A_R% percent change of irradiated w.r.t baseline value
* Tensile properties the results of Milkovich, et al. [3]
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• X: Longitudinal strength was reduced at elevated temperature in both tension and com-

pression. The percentage decrease for compression was three times larger than for

tension. At cryogenic temperature, however, Xt was significantly reduced (36-43%) while

Xc was significantly increased (21-25%). In all cases, irradiation reduced (from 0 to -54%)

the longitudinal strength. The tensile strengths are higher than the corresponding

compressive strengths at room and elevated temperature, but lower at cryogenic tem-

perature.

• Y: The transverse strength was effected in much the same way as the longitudinal

strength. That is, both Y_ and Y= were lower at elevated temperature, while the tensile

strength was lower and the compressive strength higher at cryogenic temperature. The

irradiated material had lower transverse strength, Yt and Y=, at all temperatures. In all

conditions, Yc was significantly greater than Yt-

The changes in properties observed at cryogenic temperature are believed to be the result

of matrix "embrittlement'. As the temperature is decreased, the matrix becomes more#igid

and this leads to increases in moduli, but decreases in tensile strength. It is common for

brittle materials to exhibit considerably higher strength in compression than in tension.

A similar argument can be made about softening of the matrix at elevated temperature. The

decreases in modulus and in tensile and compressive strengths are characteristics of sof-

tened materials.

Irradiation degraded the modulus and strength at all temperatures, with the exception of

transverse modulus at room and cryogenic temperature. The effects of irradiation were par-

ticularly pronounced on compressive properties at elevated temperature.

Discussion 118



6.2 Comparison of Neat Resin and Composite Properties

As noted in the last Chapter, the difference in epoxy properties when cured in neat form and

as a matrix material in a composite is uncertain. For the purposes of this discussion, it will

be assumed that the properties behave similarly in both cases even if the actual values are

somewhat different. As in the last section, the tensile and compressive composite properties

will be denoted by "t" and "c" subscripts, respectively. In addition, the neat Fiberite 934 resin

properties will be denoted by the subscript "nr".

The matrix properties obviously effect the transverse and shear properties more than the

,^..'÷,,,q;.,_l _,_;1== nrnr_=_i_,_ It i_ wirl_lv rd=_nnniT_.¢l thRt the Ionaitudinal comDressive
IUi I_J I LU4.4 I I I¢.ll L_II_II_ WIVWVl LlVU ........... _ .... _ ...... u *

strength is dependent on matrix properties, although the exact form of the relationship re-

mains elusive.

The room temperature increase in E.r following irradiation is one of the most interesting re-

sults obtained. Both the tensile [3] and compressive (Chapter 4) transverse moduli,

Ezt and Ezc, were higher in the irradiated material at room and cryogenic temperatures. The

increase in E.r provides a simple and direct explanation for this phenomena at room temper-

ature. It is not unreasonable to assume that the difference at cryogenic temperature is simi-

larly due to a radiation-induced increase in the matrix modulus.

As noted in Chapter 5, E.r of irradiated material did not decrease, as it was expected to, at

elevated temperature. However, the softening point of the neat resin material is higher than

that of the composite, probably reflecting a somewhat higher degree of cross-linking or

greater average molecular weight than that of the composite. Additionally, the irradiated neat

resin material behaves more non-linearly than the baseline material. The presence of resi-

dual curing stresses, even at the elevated test temperature, may be enough to push the matrix

material into the nonlinear range early (or even initially) in the loading. Thus, the effective

Discussion 119



modulus of the matrix material, in situ, may be lower than the modulus of the neat resin ma-

terial. This is an example of the importance of remembering that the matrix (and fibers) in a

composite are not in a stress-free condition.

The decrease in composite transverse moduli at elevated temperature (compared to room

temperature) is consistent with the decrease in E.r at elevated temperature. It should be noted

that E2= for the baseline material increased at elevated temperature. This effect remains un-

explained.

The trends in G_z [3] are similar to those in E_ and can be explained by changes in G.. anal-

ogous to those in E., used to explain the Ezt results. For example, the higher G_2 for the

irradiated material at room temperature compares well with the corresponding increase in

G._. Additionally, the increased nonlinearity of the cr - _ response of the 10° and 450 off-axis

tensile coupons [3] compares well with similar changes in the (_ - E response of the neat re-

sin (assuming the shear and axial stress-strain behavior of the neat resin are qualitatively

similar).

The prediction of composite strength using micromechanics is more difficult than the predic-

tion of elastic constants, particularly for transverse and shear properties. Additionally, as

noted in Chapter 5, there remains some question about how well the measured maximum

stresses represent the tensile strength of the matrix. For these reasons, it is probably unwise

to draw conclusions about the relationship between the composite strength properties and the

neat resin tensile strength.

It is often assumed that longitudinal compressive strength is related to the matrix shear

modulus ([22], Chapter 4). Comparison of the trends in Xc and G.r lead to mixed results. The

neat resin shear modulus, Gnr, increases significantly at room temperature although the

compressive strength decreases slightly. Both Gnr and X= decrease considerably at elevated

temperature (compared to room temperature). However, the irradiated composite material
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experiences a very large decrease in Xcwhich is not reflected in a corresponding change in

G,,. Once again this difference may be attributable to the difference in the Tg between the

composite and neat resin as previously discussed.

6.3 Effect of Irradiation on Chemical Structure

The properties of the neat resin are clearly a function of the morphology of the epoxy. The

matrix dependent properties of the composite are also dependent on the epoxy morphology,

although there are also other factors which may be equally important (i.e. fiber/matrix

interfacial properties). Epoxies form highly cross-linked rigid network structures and it is

sometimes stated that they are actually single gigantic molecules. However, Lee and Neville

[2] state that "...there is no real evidence for this..." and suggest that the actual structure

consists of "relatively small macromolecules embedded in a surrounding matrix of lower mo-

lecular weight material".

Electron radiation is known to produce two effects on polymeric materials, crosslinking and

chain scission (cleavage). Because the Fiberite 934 system has a relatively high crosslink

density the primary mechanism is believed to be chain scission [3-4,7]. Evidence for this hy-

pothesis is the lowering of the Tg following irradiation and the generation of low molecular

weight products [4, Chapter 2]. Additionally, systems containing carbon-nitrogen bonds have

been reported to be particularly susceptible to cleavage and the radiation resistance of

epoxies cured with BF_MEA has been found to be poorer than expected from the relatively

high T='s [2]. The Fiberite 934 system contains a number of C-N bonds and BFsMEA, while not

used as the primary curing agent, is also present.
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The dra,_.'.-_c color change th(; neat resin experienced during irradiation (Chapter 4) is be-

lieved to b._ _ resLfit of formaTi,,n of a color center, due to addition of a hydrogen atom to an

amine group. ] his imormation, coup!'::" with the vulnerability of the C-N to cleavage, leads to

the conclusion that a number of these bonds may be broken during irradiation.

Reliable quantitative relationships between chemical structure and mechanical properties

have not, to the best of the author's knowledge, been shown to exist. However, in view of the

measured changes in the neat resin and composite properties, the work done by Reed, et al.

[7] with a modified material system, and the postulated changes in the chemical structure of

the epoxy, it is unlikely that the radiation resistance of the Fiberite 934 system can be im-

proved without substantial modifications to the basic epoxy chemistry.
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7.0 Conclusions

The effects of temperature and electron radiation on the compressive properties of T300/934

graphite/epoxy and on the tensile properties of the neat Fiberite 934 resin will be summarized

below. The temperature range and total radiation dose were selected to simulate "worst-

case" exposure to 30 years in the geosynchronous earth orbit (GEO) environment. Materials

which actually experience long term exposure to the GEO environment may be affected to a

greater or lesser degree.

• Temperature was found to significantly affect compressive properties of T300/934. Prop-

erties generally improved at cryogenic temperature (-250° F; -157° C) and degraded at

elevated temperature (2500 F; 121oC).

• Irradiation degraded properties at all three temperatures and this degradation was most

severe at elevated temperature.

• The compressive strengths, X= and Y=, were the "best" indicators of temperature and ra-

diation induced changes. Although the Poisson's ratios experienced very large changes,

the data exhibited considerable scatter, is difficult to interpret, and may be test method

dependent. The strength values, on the other hand, were consistent and followed clear

trends.

Conclusions 123



• Compressive strength models were investigated. The shear crippling mechanism devel-

oped by Hahn and Williams [24] was found to be conceptually satisfying, in addition to

producing predicted values which correlate well with experimental measurements.

• The radiation-induced increases in elastic and shear moduli of the neat Fiberite 934 resin

are consistent with the similar, and previously unexplained, changes in the composite

room temperature transverse and shear moduli.

7.1.1 Recommendations for Future Study

• The nonlinear behavior ofthe composite and neat resin be investigated and characterized

as viscoelastic, plastic, or microdamage related

• The effect of temperature and irradiation on the fiber/matrix interfacial bond be investi-

gated

• The Poisson response under compressive load be further studied, using a different test

method, to clarify the findings of this study

• Radiation-induced changes in the chemical structure of the epoxy be investigated in detail

• The effect of electron radiation on T300 carbon fibers be determined ,<

• Realistic laminate configurations be investigated to determine if characterization of

unidirectional material allows accurate estimates of changes in laminate properties or

whether, presently unknown, interactions occur at the ply level during radiation exposure
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Appendix A. Compression Test Results

This Appendix presents the detailed results of the T30/934 compression tests . The stress-

strain data is shown in Figure 41-Figure 46 and the Poisson response is shown in

Figure 47-Figure 52. The plots contain data from five replicate tests with the following ex-

ceptions: the results for the 0° coupons of the irradiated material at cryogenic temperature

(Figure 41b) include six tests and the Poisson response for the 0° coupons of the irradiated

material at elevated temperature (Figure 43b) includes the results of three tests.

Following the plots are tabulations of the elastic (Table 10) and strength (Table 11) properties.

The method used to analyze the compression data is outlined in Chapter 3 and the details are

presented in Appendix C.
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The test condition is designated by the following code,

XYII

Baseline (non-irradiated) material

Irradiated (10,000 Mrads) material

y

r00

ii = Inn
L _v

Cryogenic ( - 250°F; - 157°C) Temperature

Room Temperature

Elevated (250°F; 121°C) Temperature

0 ° Fiber Orientation

ono Fiber _;o,_o_i,_n
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Table 10. Statistical Analysis for T3001934 Compressive Elastic Properties

Test

Condition

NC00

ICO0

NROO

IRO0

NEO0

lEO0

Ncgo

IC90

NR90

IRgO

NEgO

lEg0

YOUNG'S MODULUS

Mean

Value

17.2

16.0

15.5

14.6

15.0

14.4

2.10

2.14

1.63

1.74

1.80

0.666

Standard

Error

0.717

0.528

0.575

0.271

0,751

0.420

0.0529

0.0239

0.0270

0.0299

0.0304

0.0296

High

18.6

17.1

16.7

15.1

16.5

15.3

2.21

2.18

1.69

1.80

1.86

0.725

Range

Low

15.7

15.0

14.3

14.0

13.5

13.6

2.O0

2.09

1.58

1.68

1.73

0.607

NC00

IC00

NRO0

IR00

NEO0

IE00

Ncgo

IC90

NR90

IRgO

NEgO

IEgO

POISSON'S RATIO

0.136

0.104

0.182

0.153

0.309

0.384

0.0320

0.0324

0.0366

0.0447

0.0791

0.239

0.0101

0.0169

0.0381

0.0156

0.0232

0.0199

0.O058

0.0025

0.0038

0.0129

0.0122

0.0545

0.157

0.138

0,255

0.184

0.356

0.424

0.0436

0.0374

0.0442

0.0705

0.1035

0.348

0.116

0.0701

0.110

0.122

0.263

0.344

0.02O3

0.0275

0.0290

0.0189

0.0546

0.130
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Table11. StatisticalAnalysisforT3001934 Compressive Strength Properties

Test

Condition

NCO0

ICO0

NRO0

IRO0

NEO0

lEO0

Ncg0

IC90

NR90

IRg0

NE90

lEg0

COMPRESSIVE STRENGTH

Mean

Value

241

228

193

188

126

48.3

56.4

51.8

30.4

26.3

18.9

8.71

Standard

Error

9.26

18.4

13.2

15.0

6.16

6.09

3.10

2.11

0.530

1.36

0,688

0.674

High

260

265

219

218

139

60.5

62.7

56.0

31.5

29.0

20.3

10.1

Range

Low

222

192

166

158

114

36.1

50.3

47.5

29.3

23.5

17.6

7.36

NCO0

ICO0

NRO0

IRO0

NEO0

lEO0

NC90

IC90

NR90

IRg0

NE90

IEgO

1.62

1.69

1.45

2.00

0.751

0.310

3.26

2.92

3.07

2.65

1.94 +

1.75

FAILURE STRAIN

u.

.n

.N

1.78

1.99

1.67

2.48

0.813

0.379

3.74

3.23

3.65

3.03 -I-

2.19

1.47

1.37

1.22

1.57

0.691

0.235

2.82

2.62

2.78

1.97

1.74

1.45
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Appendix B. Neat Resin Test Results

This Appendix presents the detailed test data from the neat resin tensile tests. All the plots

contain the results of three replicate tests. The stress-strain response is shown in

Figure 53-Figure 56 and the Poisson response is shown in Figure 57-Figure 60.

Table 12 presents the elastic and strength properties for the individual tests. The system

used to identify the individual specimens is similar to that used for the compression coupons.

The first letter denotes the radiation dose; "N" denotes baseline (non-irradiated) and "ln de-

notes irradiated (10,000 Mrads). The second letter denotes the test temperature with "R n de-

noting room temperature and nE" denoting elevated (250° F; 121° C) temperature. The final

two digits are related to the specimen fabrication sequence and allow specimens which were

cured in the same batch to be identified.
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Table 12. Detailed Fiberite 934 Neat Resin Tensile Test Results

Test

NR03

NR06

NR10

Mean

St. Dev.

CV

NE02

NE05

NE09

Mean

St. Dev.

CV

IR05

IR10

IR23

Mean

St. Dev.

CV

IE06

IE12

IE22

Mean

St. Dev.

CV

E (msi)

0.658

0.695

0.668

0.674

0.019

2.8%

0.494

0.500

0.474

0.489

0.014

2.8%

0.804

0.802

0.791

0.799

0.007

0.9%

0.487

0.503

0.512

0.501

0.013

2.5%

0.369

0.367

0.354

0.363

0.008

2.2%

0.356

0.337

0.329

0.341

0.014

4.1%

0.383

0.372

0.365

0.373

0.009

2.4%

0.382

0.347

0.375

0.368

0.019

5%

_m,, (ksi)

8.93

8.41

8.26

8.53

0.35

4.1%

7.36

12.38

11.16

10.30

2.62

25%

10.92

11.53

10.34

10.93

0.56

5.4%

7.54

7.46

4.84

6.61

1.54

23%

E,,,. (%)

1.60

1.39

1.44

1.48

0.11

7.4%

1.83

3.83

3.49

3.05

1.07

35%

1.54

1.64

1.47

1.55

0.085

5.5%

2.82

3.45

1.34

2.54

1.08

43%

G (msi)

0.240

0.254

0.247

0.247

0.007

2.8%

0.182

0.187

0.178

0.182

0.005

2.5%

0.291

0.292

0.290

0.291

0.001

0.3%

0.176

0.187

0.186

0.183

0.006

3.3%

_pL (ksi)

3.51

3.47

3.27

3.42

0.13

3.8%

2.35

2.50

2.46

2.44

0.08

3.2%

5.18

5.05

5.22

5.15

0.089

1.7%

1.42

1.47

1.13

1.34

0.18

14%

St. Dev.--Sample Standard Deviation
CV ........ Coefficient of Variation--St. Dev/Mean
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Appendix C. Data Analysis and Statistical

Calculations

This Appendix contains the details of various calculations and derivations described in the text

in a general way. More specifically, the first section covers the derivation of the correction for

bending effects used in the analysis of the compression test data; the second section presents

the least squares equations and describes how this criterion was applied to the analysis of the

test data; and finally, the third section describes the methods used to estimate the standard

errors presented in Appendix A and shown in Chapter 4.

C.1 Correction for Bending Effects

This section outlines the method used to correct the strain gage data to eliminate the influence

of bending effects. The method uses the geometry and load conditions shown in Figure 61.

The goal is to modify the strain data so it that it reflects only the the influence of the axial load,

P. The following assumptions are used:

Appendix C. Data Analysis end Statistical Calculations 154



• The strain distribution is continuous and linear through the thickness

• The neutral axis is located at the geometric center of the cross-section

• The strain gage grids are fiat and separated by a uniform layer of backing material and

adhesive

Two different gage stacking sequences are considered; the orientations of the gages is with

reference to the load direction. The numerical subscripts (i.e. 1,2,3,4) on the strains denote

the gage number (Figure 61), the subscript "a" denotes "axial" and the "t" subscript denotes

"transverse".

C.1.1 For Case 1:

If %" denotes the distance from the center of the specimen to the first active grid and "b" de-

notes the thickness of the gage backing and an adhesive layer, then the strain in the four

gages are:

P + Mc
Sl- AE IE

,,= l,,

,3_1-2v M'c+I,E
P Mc

s4- AE IE

The axial strain, P/AE, is then:

P _ El+t;4
I;a- AE 2
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E;T

Using the fact that v = - --_-, the equation for 1;=can be rewritten,

_;T {M(c+ b)
1;2= 1;7+ _[- i#

The bending strain coefficient, I-_" is:

)

M _ E1 --I;4

IE 2c

Finally, substituting the expressions for _ and _. into the equation for st and solving for 1;T,

1;T =
62

1;1 _ 1;4 T

C.1.2 For Case 2:

Performing a similar analysis for the second stacking sequence,

p (c + b)
s2 = _ + M IE

'['_'E + M(C+lE2b)]

P Mc
s4- AE IE

The bending strain coefficient is,
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M _ s2 - s4
IE 2c + b

The axial strain is,

F'2 "F F-'4 .._...[ F--,2-- _4 ]_ - 2 _-c__

The transverse strain is:

_;T "=

1+ c ]Ea 2c + b

It should be noted that typical values for the thickness of the gage backing and adhesive layer

can be obtained from Micro-Measurements technical literature [39].

C.2 Regression Equations

Probably the most common method used to determine the "best" curve through a set of data

is the method of least squares. In essence the least squares criterion asserts that the optimal

curve is obtained if the square of the deviations of the data points from it is minimized. Im-

agine a set of n matched pairs (x,y) of observations. The least squares criterion states that

the best y=f(x) curve is obtained for the minimum of,

n 2

E = _ ['Yl - f(xl)3
I=1

In this study f(x) was chosen to be quadratic,
(I
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n 2
E = I; [y_- (A + Bx, + Cx_)'l

I=1

The minimum is obtained by differentiating with respect to each of the parameters and

equating to zero.

n

aE _O= -2 7-.[Yi-(A + Bx I + Cxl2)]
OA i=1

n

_tE _ 0 = -2 % ry I - (A + Bx I + Cxl2)]xi
OB I=1

n _

#E _0= -2T_.,Lyj-
ac i=1

(A + Bx,+ Cx,2)]×,2

Dropping the limits on the summations and writing in matrix form,

In x2'[iI r Yi,T_.,x _x 2 7_.,x3/ = ,T_.,xy

These equations were used to obtain the material properties from the compression test data

by including the data points obtained from all the tests at one condition (i.e. one of the twelve

unique combinations of fiber orientation, radiation dose, and test temperature) in a single

calculation. Young's modulus and Poisson's ratio are the initial slopes of the curves obtained

dy
by these calculations. In general, the slope is given by -_- = B + 2Cx and the initial slope

is simply B.

Two types of functions, y=f(x) and x=f(y), were calculated and found to yield essentially the

same values for E and v. The values of the function of the form y=f(x) were used for con-

venience.
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The failure strains were obtained by solving the (_ - E equations for the value of E corre-

sponding to the (_ at failure (e.g. the strength). Some differences were found in the failure

strains obtained from the two types of functions. These differences were resolved by exam-

ining the nature of the calculated curves and comparing the final strain gage readings to the

calculated values for failure strain.

The properties for the neat resin were obtained in a similar way, except that the regression

analysis was conducted on each individual set of test data. The values for the three tests at

each condition were then simply averaged together. Another calculation was made in which

all the tests at one condition were lumped together (the same as described above for the

compression data). The difference between the averages of the three tests and the "lumped"

calculation were insignificant.

C.3 Determination of Standard Errors

This section describes the methods used to obtain the standard errors (or deviations) of the

various properties. For the compressive strength values, the mean and standard deviation

were calculated using the 5 individual values obtained at each condition and the usual for-

mulas,

d__.iX
Mean -

n

Standard Deviation = 2 11/2n
_'z"x2 n - 1
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Theelasticproperties and the failure strains for the compression coupons were obtained by

using the quadratic regression curves as described in the previous section. The remainder

of this section will describe how the interval estimates for the elastic properties and failure

strains were obtained.

There are statistical methods which allow error estimates (confidence intervals) to be be

made on the curvilinear regression curves. The details of the calculations are rather involved

and tedious. The interested reader is referred to Snedecor and Cochran [37].

These error estimates were used to provide bounds on the elastic properties. This process

will be described in detail for Young's modulus. The process starts with a set of _ - _ data,

an equation, <_ = f(E) = A + B_ + C_ = , calculated as described previously, and an error es-

timate for _, which will be denoted "s". The initial slope of the a - E curve is B. For purposes

of establishing a range on B, the straight line portion of the curve was extended to the failure

strain (Figure 62). Denote the final stress on this straight line curve as _ (note that because

the _ - E were all nonlinear to a greater or lesser degree o- =_ X=). The bounds on B were

obtained in the following way,

A

Brnin_ _-2s -B- 2.__s
_f Ef

^

Bmax_ G +2s _ B + 2._s.s
Ef Ef

The upper and lower bounds, B,._, and B_,x, when substituted into the original function for B,

were found to produce "envelopes" which contained essentially all the experimental data

points.

L

The interval estimates for Poisson's ratio were calculated in the same manner as that de-

scribed above. The procedure is exactly as described above with the exception of using

transverse strain rather than stress in the calculations.
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The range for the failure strain was calculated in a similar fashion (Figure 62b). The bounds

on the failure strain were obtained by adding 4- 2s to the strength value and solving the

a = f(_) equation for the corresponding strain values.

Appendix C. Data Analysis and Statistical Calculations 163



"BIBLIOGRAPHIC DATA _1. Report No. 2.

SHEET I CCMS-87-11, VPI-E-87-13
4. Title and Subtitle

Space Environmental Effects on Graphite-Epoxy Compressive

Properties and Epoxy Tensile Properties

7. Author(s)

D. J. Fox, C. T. Herakovich, _G. F. Sykes, Jr.

9. Performing Organization Name and Address

Virginia Polytechnic Institute and State University

Engineering Science and Mechanics
Blacksburg, Virginia 24061

12. Sponsoring Organization Name and Address

Applied Materials Branch
National Aeronautics and Space Administration

Langley Research Center
Hampton, VA 23665

15. Supplementary Notes

3. Recipient's Accession No.

5. Report Date

July 1987

6.

8. Performing Organization Rept.
No. VPI-E-87-13

10. Project/Task/Work Unit No.

!I. Contract/Grant No.

NAG-1-343

13. Type of Report & Period

14.

Covered

16. Abstracts

This study characterizes the effects of electron radiation and temperature on a

graphite-epoxy composite material. Compressive properties of the T300/934 material

system were obtained at -250°F (-157°C), room temperature, and 250°F (121°C). Tensile

specimens of the Fiberite 934 epoxy resin were fabricated and tested at room temper-
ature and 250°F (121°C). Testing was conducted in the.baseline (non-irradiated)

and irradiated conditions. The radiation exposure was designed to simulate 30 year, I

"worst-case", exposure in geosynchronous earth orbit. Mechanical properties tended

to degrade at elevated temperature and improve at cryogenic temperature. Irradiation

generally degraded properties at all temperatures.

17. Key Words and Document Analysis. 17n. Descriptors

composites, graphite-epoxy, compressive testing, space environment, mechanical

properties, temperature, electron radiation, compressive failure, epoxy resin

|Tb. Identifiers/Open-Ended Terms

17e. COSATI Field/Group

18. Availability Statement

unl imi ted

19.. Security Class (This
Report)

UNCI.ASSIFIED
20. Security Class (This

Page
]JNCLASSIF IED

21.No. of Pages176

22. Price



VIRGINIA TECH CENTER FOR

COMPOSITE MATERIALS AND STRUCTURES
/

Tl_e Center for Composite Materials and Structures

is a coordinating organization for research and

educational activity at Virginia Tech. The Center was

formed in 1982 to encourage and promote continued

advances in composite materials and composite
structures. Those advances will be made from the

base of individual accomplishments of the forty

members who represent ten different departments

in two colleges.

The Center functions through an Administrative

Board which is elected yearly and a Director who

is elected for a three-year term. The general purposes

of ithe Center include:

• collection and dissemination of information

about composites activities at Virginia Tech,

• contact point for other organizations and

individuals,

• mechanism for collective educational and

research pursuits,

• forum and agency for internal interactions at
_l|rcr;n|_ T_rh

The Center for Composite Materials and Structures

is supported by a vigorous program of activity at

Virginia Tech that has developed since 1963. Research

expenditures for investigation of composite materials

and structures total well over seven million dollars

with yearly expenditures presently approximating

two million dollars.

Research is conducted in a wide variety of areas

including design and analysis of composite materials

and composite structures, chemistry of materials and

surfaces, characterization of material properties,

development of new material systems, and relations

between damage and response of composites.
Extensive laboratories are available for mechanical

testing, nondestructive testing and evaluation, stress

analysis, polymer synthesis and characterization,

material surface characterization, component

fabrication, and other specialties.

Educational activities include eight formal courses

offered at the undergraduate and graduate levels

dealing with the physics, chemistry, mechanics, and

design of composite materials and structures. As of

1984, some 43 Doctoral and 53 Master's students have

completed graduate programs and several hundred

Bachelor-level students have been trained in various

aspects of composite materials and structures. A

_ignificant number of graduates are now active in

industry and government.

Various Center faculty are internationally recog-

nized for their leadership in composite materials and

composite structures through books, lectures,

workshops, professional society activities, and

research papers.
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